

PostgreSQL Mistakes and How to Avoid Them

1. Welcome
2. 1_Introduction
3. 2_Bad_SQL_usage
4. 3_Improper_data_type_usage
5. 4_Table_and_index_mistakes
6. 5_Improper_feature_usage
7. 6_Performance_bad_Practices
8. 7_Administration_bad_practices
9. 8_Security_bad_practices

10. 9_High_availability_bad_practices
11. 10_Upgrade/migration_bad_practices
12. 11_Conclusion
13. Appendix_A._Frogge_Emporium_database_schema
14. Appendix_B._Cheat_sheet

Welcome
Thank you for purchasing the MEAP for PostgreSQL Mistakes and How to
Avoid Them!

PostgreSQL is really booming right now and seeing a rapidly expanding user
base. According to the Stack Overflow 2023 Developer Survey, it’s now the
most admired and desired database among developers and professional
developers. This is the right time to get important content out there for this
crowd of newcomers to Postgres but also cover aspects of this database that
are not well-known or overlooked.

Through more than 15 years of experience with PostgreSQL and having
worked for two of the foremost Postgres database companies, I saw a lot of
mistakes being made “in the field” and started speaking about them at
conferences. As searching for “things not to do” is not common, and the
advice out there is scattered across disparate blog and forum posts, it made
sense to gather the most important PostgreSQL mistakes in a book.

The book’s approach to the topic is to give you a story or narrative to help
understand the setting and context of a problem to be solved. Then, uncover
how potential solutions can turn into mistakes, and finally explain why this is
wrong in PostgreSQL, and give workarounds and recommendations. Code
snippets, sample application code, mind maps and diagrams, and comparative
figures and tables are used throughout this book to illustrate the points being
made.

Many books tell you what to do without providing the context of why –
wherever relevant, I spend a couple of lines explaining the reasons, ranging
from simple math, to standards compliance, to Postgres internals. By sharing
these stories with your peers and spreading knowledge of these pitfalls, we
can make everyone’s PostgreSQL experience more productive and enjoyable.

MEAP is a great way to get the book’s content out there as soon as possible
without waiting for the final publication date. I will be very happy to receive

your feedback in the liveBook’s Discussion Forum, and hopefully your
comments will lead to an even better finished book!

– Jimmy Angelakos

In this book

Welcome 1 Introduction 2 Bad SQL usage 3 Improper data type usage 4
Table and index mistakes 5 Improper feature usage 6 Performance bad
Practices 7 Administration bad practices 8 Security bad practices 9 High
availability bad practices 10 Upgrade/migration bad practices 11 Conclusion
Appendix A. Frogge Emporium database schema Appendix B. Cheat sheet

1 Introduction
In this chapter

Learning about PostgreSQL
Identifying and talking about PostgreSQL mistakes
Categorizing PostgreSQL mistakes
Using this book to learn

Welcome to PostgreSQL Mistakes and How to Avoid Them! Presumably, you
got your hands on this book to learn more about PostgreSQL, and that is
indeed the book’s purpose. However, it’s not a tutorial book in the traditional
sense, nor is it an administration guide - there are good books already on
those subjects. This book makes it a point that mistakes do happen, and that
they are a good learning opportunity. In this chapter, we will see why
PostgreSQL is important right now, how this book examines PostgreSQL-
related mistakes and why this is a worthwhile endeavor.

1.1 Why learning about PostgreSQL matters

As we mentioned before, PostgreSQL (a.k.a. Postgres) is a disruptive
technology that has started unseating giant database vendors from their
thrones. It is a robust and reliable feature-rich database, very extensible, and
gaining more enterprise features with each new release. It has found wide
acceptance in the database community but also in commercial circles, with
hundreds of vendors now offering code contributions, professional support,
enhanced capabilities versions and even hosted, cloud, or Database-as-a-
Service (DBaaS) Postgres offerings.

Very importantly, the PostgreSQL Project is a prime example of community-
led and community-driven free software, and this is expressed in the
PostgreSQL License. This is particularly significant with most every other
database vendor adhering to proprietary software and with both established
and emerging database efforts switching to non-open-source compliant

licenses in an attempt to chase profitability by restricting the ways others can
make money with their product. On the other hand, you can freely profit from
PostgreSQL by selling support, hosting, training or services, and even basing
your own open source or proprietary product on it with no nasty legal
surprises hiding around the corner. The lack of vendor lock-in combined with
the ability to be able to base your business entirely on Postgres with no
licensing restrictions is a powerful differentiator that makes Postgres shine
bright in the database field.

This license won’t change: as Jonathan Katz of the Core Team pointed out in
March 2024, "The PostgreSQL Project began as a collaborative open source
effort and is set up to prevent a single entity to take control. This carries
through in the project’s ethos almost 30 years later, and is even codified
throughout the project policies".

PostgreSQL’s power and extensibility have helped it find use cases in a very
wide array of industries and applications. Notably, there are huge banking,
credit and retail systems putting it to use in Online Transaction Processing
(OLTP) scenarios, but also taking advantage of its advanced querying and
reporting capabilities to perform large-scale business analytics, including
Online Analytical Processing (OLAP). Extensions such as PostGIS for
Geographic Information Systems (GIS), Citus columnar stores, TimescaleDB
for time series data, and pgvector for vector search added lots of specialized
functionality to further expand its user base. There are hotel chains, film
studios, shipping firms, insurance companies, state organizations, health
institutions and space agencies using one form of Postgres or another, and the
list goes on. For these uses, robustness, scalability and reliability are of
paramount importance. Of course, this ecosystem is completed by several
large and small vendors, consultants and contractors who enable all these
applications with their expertise.

1.2 Why talking about PostgreSQL mistakes
matters

In line with PostgreSQL becoming more popular and seeing more use cases
every day, we see a multitude of users either trying to apply practices they’ve

learned from using other Database Management Systems (DBMSs) or
misunderstanding Postgres features. This can be in the form of repeating
something that you know works on another database system, or using a
feature without a full understanding of its documentation. For example,
PostgreSQL supports complex data types like arrays, whereas you would
have to insert multiple rows with repeated data in other databases. Sometimes
it’s just a case of using the wrong tool for the job, for example, the wrong
function or data type. It can even be the case that a choice that you have made
made works right now, but will stop working in the future for various
reasons, such as a table becoming much larger.

These factors and more often lead to mistakes which can be costly, if they
happen on a production system. It’s better to be aware and to catch them
early, as these mistakes can also be time-consuming to rectify and may
involve a high degree of difficulty or risk, such as changing something on a
live system that is in use.

It is important to spread awareness of potential mistakes and pitfalls in order
to:

Save person-hours that will be spent dealing with their consequences
Protect the stored data
Future-proof database designs
Fight anti-patterns detrimental to design and performance
Embrace standard solutions instead of reinventing the wheel
Build awareness of database best practices elsewhere in your team or
organization
Get the most out of PostgreSQL

And finally:

Protect the reputation of your favorite database! Too often have we seen
blog posts or articles decrying PostgreSQL because the author didn’t
understand the technology, then tried to do something in an unorthodox
way, failed, and came to the mistaken conclusion that Postgres was an
inadequate platform.

1.3 What you will learn

PostgreSQL Mistakes and How to Avoid Them will hopefully help you:

Educate yourself about potential PostgreSQL pitfalls relevant to various
aspects of PostgreSQL configuration, administration, and operation.
Learn how to avoid aforementioned pitfalls before their consequences
manifest themselves, or how to employ workarounds to correct them.
Gain a wider understanding of fundamental database operating
principles and best practices to be applied.
Better understand the differences and nuances that distinguish
PostgreSQL from other databases.
Understand the impact of enforcing best practices on PostgreSQL usage
and performance.

What it will help you do — or do better — in your everyday life on the job:

Save time and effort by recognizing best practices and associated usage
patterns.
Be proactive in addressing potential problems before they become
damaging.
Shield yourself against accidental or intentional misuse of the database
by others by taking preventive measures.
Educate your peers by sharing this knowledge and make everyone’s
experience with PostgreSQL more productive and enjoyable.

1.4 Typical kinds of PostgreSQL mistakes

Let’s examine some of the different ways that you can inadvertently find
yourself doing something in PostgreSQL that turns out to be a mistake.

1.4.1 Coming with expectations from other databases

Many newcomers to Postgres find themselves confused and frustrated when
taking their first steps with the database. This may be due to a number of
reasons:

One possible reason is that other databases frequently require a lengthy and
complicated installation wizard where you have to make important (and often
irreversible) decisions before you can start using the database. With Postgres,
many users are stunned by the unexpected realization that, in most cases,
once you’ve installed it, you’re able to use the database server straight away.
No frills, connect your database client to the server and you can get busy
exploring the possibilities. However, with this comes a risk — out of the box,
Postgres is configured with some "sensible defaults". How sensible this
default configuration is really depends on what you intend to use the database
for. The default configuration is almost certainly not suitable for most
production usage scenarios.

Another possible source of confusion is that most DBMSs have their own
way of doing things, often diverging from the SQL Standard (the
international standard for Structured Query Language — currently ISO/IEC
9075:2023) for historical, business or implementation reasons. PostgreSQL
has its way of doing things as well, and it is generally recognized that it is the
most SQL Standard-compliant database currently available. This means that
sometimes people come to expect what they’re used to from previous
exposure to other database systems. Such an expectation is that creating a
database USER will create a SCHEMA with the same name, with implied
ownership of its objects by the same user. Where some databases will silently
auto-convert between types, such as being able to insert ones and zeros into a
BOOLEAN column, PostgreSQL will tell you that this is an error. It then would
make sense that users would be surprised by the fact that none of these things
work in Postgres.

1.4.2 Misunderstanding PostgreSQL

Postgres is a general-purpose database. Regardless, that doesn’t mean it’s
suitable for every single use imaginable. We have witnessed people
attempting to use it:

As an embedded database
As a distributed database with home-brew replication
As a log server
As bulk video storage for films

For in-memory use cases better suited to Redis
As a graph database (guilty!)

Yes, it can do all these things to an extent. But you should always be aware
of available solutions for the particular niche you are trying to inhabit, and
weigh the pros and cons of using a generic database solution versus
something specialized.

1.4.3 Misunderstanding the documentation

PostgreSQL is very richly documented, and this is enforced in the
governance of the project. It is well established that no patch gets accepted
without the submission of accompanying documentation — if you build or
change something, you must document it. All of this documentation material
is available on the Web at: https://postgresql.org/docs/ .

Often, this official documentation is presented in a very technical or
academic way (in line with the PostgreSQL Project’s origins). For laypersons
used to tutorial-style walkthroughs or notes including more practical
applications, this may be hard to follow. As a consequence, it is possible to
misunderstand the nature of a feature or the correct way to utilize it.

It may also be possible to miss important side notes, or to lack the context
that more advanced users may have gained through experience. Sometimes,
parts of the documentation feel incomplete because insights, terms or details
that are essential for understanding have to be located elsewhere in the
documentation. Finally, you need to make sure you are reading the specific
documentation for the version of PostgreSQL you are using to avoid
confusion and misunderstandings.

1.4.4 Using relics from the SQL Standard

In short, I would call this "just because it’s in the official SQL Standard
doesn’t mean you have to use it". There are many holdovers in the standard
that either are relevant to an older era, seemed like a good idea at the time, or
are forgotten by nearly everyone. Some are poorly defined implementation-
wise and work differently in every database system. Some SQL features have

been retained for backward compatibility purposes, or the reasons why they
are not to be preferred — or used at all — are broadly understood. A good
example of this is the TIME WITH TIME ZONE type, explained in Chapter 3.

1.4.5 Not following best practices

Best practices for the design, development, administration and maintenance
of IT systems have been established through decades of observation and
industry experience. Many systems have commonalities that lend themselves
to similar best practices and it makes sense to apply these to database systems
as well. In particular, databases are complex systems that have numerous
correctness, performance and security considerations, and Postgres is no
exception to the rule.

Failing to follow best practices when you are designing your application’s
database schema, planning for usage patterns or concurrency, implementing
high availability and disaster recovery solutions, and establishing security
policies can lead to serious problems. It is a surefire way to trip yourself up
somewhere down the road.

1.5 How this book works

As we already mentioned, most if not all of the mistakes and ideas in this
book have come through observation of PostgreSQL installations and their
users' behavior in the field, either first-hand or through documented stories
shared by others in the industry or community who were kind enough to do
so.

A story, or narrative, is key to comprehending the setting and context of a
theoretical or practical problem. It sets the stage for understanding the
mindset of whoever is attempting to solve it and sheds light on their decision-
making process. From there, we can get into the general use case and the
specific issue at hand. We will see the formation of the resolution attempt and
the chain of events that leads to the mistake. We will then dive deeper into
why this is a mistake, its causes, and its potential consequences down the
line. Finally, we will discuss the correct solution and how to implement it.

All of this discussion is supplemented, where needed, with actual samples of
database schema and data, SQL or PL/pgSQL code for both erroneous
solutions and the right way to do things, and finally expected output in both
cases.

At the time of writing, the current release is PostgreSQL 17, so that’s the
version we are going to use in this book. Of course, the vast majority of the
book’s content will be applicable to older recent versions of Postgres as well.
Where there are differences, they will be pointed out.

Tip

PL/pgSQL is an easy procedural language for PostgreSQL that can be used to
create functions, procedures, and triggers. It adds control structures to the
SQL language, can use all user-defined types, functions and operators, and
can perform complex computations.

1.5.1 Mental models

Something useful to always keep in mind is that PostgreSQL is a client-
server and multi-process database management system. This means that any
client application connects to the database server (or Postgres server) running
inside a single host to run queries and retrieve data. This connection is
handled by one or more Postgres backend processes running inside the
server. There are also other internal Postgres processes, that may not directly
interact with the client. The multi-process design allows parallelization and
utilization of all available CPUs, but behaves in some ways that are different
to multi-threaded database systems. This is what this model looks like:

Figure 1.1 How the PostgreSQL client-server architecture works

This book works as follows: We start with a narrative which provides context
for our use case. We see the problem and the resolution attempt that leads to
a mistake. Then we see why this is wrong, its consequences and potential
workarounds. Finally, the correct solution and how to implement it.
Something like this:

Figure 1.2 How "PostgreSQL Mistakes and How to Avoid Them" works

1.5.2 Example mistake

Let’s now look at a possible mistake, to help illustrate briefly how this book
walks through the narrative, problem, and resolution steps.

Side note

This example isn’t particularly thrilling, and may not even apply exclusively
to Postgres, but it shows how this book treats issues according to the mental
model presented above.

Let’s assume that you have a table with hundreds of thousands of customer
support tickets such as the one in this (simplistic) model:

CREATE TABLE support.tickets (id int, content text, status smallint);

For our sample data, we will assume that a ticket’s status = 10 means
"open", and status = 20 means "closed". Let’s insert a few hundred
thousand rows of closed tickets:

INSERT INTO support.tickets

SELECT id, 'case description text', 20

FROM generate_series(1, 499750) AS id;

And now let’s insert a few hundred rows of recent, still-open tickets:

INSERT INTO support.tickets

SELECT id, 'case description text', 10

FROM generate_series(499751, 500000) AS id;

For the sake of simplicity, we will assume that parallelization is not possible,
so let’s disable it via:

SET max_parallel_workers_per_gather = 0;

We will be tracking query duration by enabling timing in psql:

\timing

Timing is on.

Let’s now say that, for your customer support application, only the open
tickets are relevant. You therefore want to count how many of those open
tickets you have because you are interested only in them. Let’s try the
following:

Listing 1.1 Trying to solve the problem

SELECT count(*)

FROM support.tickets

WHERE status = 10;

Indeed this open ticket count returns the correct result. But it is slow:

 count

 250

(1 row)

Time: 110.036 ms

Let’s see why it is slow by running EXPLAIN, which shows us how
PostgreSQL will execute the query (the query plan):

EXPLAIN SELECT count(*)

FROM support.tickets

WHERE status = 10;

 QUERY PLAN

--

 Aggregate (cost=9927.28..9927.29 rows=1 width=8)

 -> Seq Scan on tickets (cost=0.00..9927.28 rows=1 width=0)

 Filter: (status = 10)

(3 rows)

This tells us that in order to run the Aggregate count(), PostgreSQL is
planning to use a Seq Scan on the table tickets and then Filter the results
by status = 10.

Sequential scans (also known as full table scans) are slow. So, you think, I’ll
create an index. Indexes make everything faster, right?

CREATE INDEX ON support.tickets(status);

CREATE INDEX

Time: 732.403 ms

Now that the index has been created, we try again:

SELECT count(*)

FROM support.tickets

WHERE status = 10;

 count

 250

(1 row)

Time: 3.715 ms

That’s much better. EXPLAIN will confirm why it is much faster now - an
Index Only Scan is being used:

 QUERY PLAN

--

 Aggregate (cost=4.44..4.45 rows=1 width=8)

 -> Index Only Scan using tickets_status_idx on tickets

 (cost=0.42..4.44 rows=1 width=0)

 Index Cond: (status = 10)

(3 rows)

However, this index is quite big:

Listing 1.2 Why doesn’t this work?

\x

\di+ support.tickets*

List of relations

-[RECORD 1]-+-------------

Schema | support

Name | tickets_status_idx

Type | index

Owner | frogge

Table | tickets

Persistence | permanent

Access method | btree

Size | 3408 kB

Description |

Imagine hundreds of millions of tickets in your customer support history, but
only around the latest 250 are ever open at the same time.

Large indexes, of course, take up more disk space. But they are also slower
because there’s more data to traverse, and they slow down write operations
because they need to get updated with every INSERT or UPDATE.

In our case, we only care about the comparatively few open tickets. So we
can save on the index size by using what’s known as a partial index, and add
only the rows that we are interested in, the ones WHERE status = 10.

We now drop the previous index and create a new partial index:

Listing 1.3 Correct solution

DROP INDEX support.tickets_status_idx;

CREATE INDEX ON support.tickets(status)

WHERE status = 10;

Look at how much smaller this index is! It makes sense, since we’re only
indexing around 0.05% of the total rows, right?

\di+ support.tickets*

List of relations

-[RECORD 1]-+-------------

Schema | support

Name | tickets_status_idx

Type | index

Owner | frogge

Table | tickets

Persistence | permanent

Access method | btree

Size | 16 kB

Description |

This is what the execution time looks like now, after having reduced the
index size by a factor of more than 200:

SELECT count(*)

FROM support.tickets

WHERE status = 10;

 count

 250

(1 row)

Time: 0.762 ms

And this is what EXPLAIN shows now:

 QUERY PLAN

--

 Aggregate (cost=4.16..4.17 rows=1 width=8)

 -> Index Only Scan using tickets_status_idx on tickets

 (cost=0.14..4.16 rows=1 width=0)

(2 rows)

The operation is still an Index Only Scan, but of a much smaller index, so it
takes far less time to execute.

So we have seen that just plopping an index on a column technically works,
but is not the optimal solution when you consider things such as large data
volumes and performance requirements.

1.6 Sample database: Frogge Emporium

Every database book needs a sample database schema, and why go with
something that’s been floating around the Web for decades?

Here’s Frogge Emporium, which, as a self-respecting retail chain, will
certainly have processes, files, records, archives and datasets relevant to its
business. These can, of course, be represented as relational tables. Some of
the tables that its database will have are:

branches with
stock,
customers,
suppliers,
products, lots and lots of
orders,
payments with
payment_types

and more.

Please see Appendix A for the full database schema.

Note

The test data generation script in Appendix A creates data using the current
date and works its way back one year. As a result, your generated test data
will reflect the date when you run the script, which means it won’t exactly
match the output shown in the examples in this book. This is by design to
ensure that the script remains dynamic and useful for testing in any time
period.

1.7 Summary

PostgreSQL is a powerful, free and standards-compliant database that is
disrupting the industry and gaining in popularity every day.
It’s important to learn about Postgres mistakes (and from those
mistakes) to save time and effort and safeguard your data.
Raising awareness of potential issues benefits everyone.
You need to understand how Postgres works and in what ways it is
different from other DBMSs in order to avoid making mistakes,
especially if you are coming from another system — not all databases
are created equal.
PostgreSQL has a client-server multi-process architecture and this forms
important context for the rest of this book.
Following best practices and examining the documentation carefully
will guide you to the correct technical solution for your problem.
This book uses a use case narrative, accompanied by code, to
demonstrate how you can make a mistake and prevent or recover from
it.

2 Bad SQL usage
In this chapter

Avoiding SQL pitfalls
Exercising due care with your query results
Improving performance of complex queries
Checking your queries for correctness

Let's begin our journey into the land of PostgreSQL mistakes with what most
relational database users are familiar with: Structured Query Language
(SQL). In this chapter, we examine some bad SQL habits that can lead to bad
query performance or, even worse, getting wrong query results. Postgres is
very particular about the way it wants queries to be written and in most cases
follows a strict interpretation of the SQL Standard. This means that you need
to be careful about the way you construct those queries, and always check
that you are actually getting exactly the results you want.

2.1 Using NOT IN to exclude

It's often that we need to specify a condition with a negative expression. No,
that doesn't mean that we are trying to be unpleasant! It's simply that
sometimes, to define a query, instead of specifying what we want in our
results, we specify what we don't want in our results—the inverse of the
desired condition.

Lingo: "Predicate"

A predicate is simply a conditional expression that resolves to a boolean
value: either TRUE or FALSE. A good example of a predicate is the content of
our WHERE clause.

Negative predicates are expressed with the NOT keyword and they can be used
to invert any SQL expression, including those based around IN:

Listing 2.1 Example queries with IN / NOT IN

SELECT * FROM (VALUES ('Harper', 'salesperson'),

 ('Parker', 'driver'),

 ('Riley', 'electrician'),

 ('Skyler', 'manager'))

 AS t(first_name, job_title)

WHERE job_title IN ('salesperson', 'driver', 'electrician');

 first_name | job_title

------------+-------------

 Harper | salesperson

 Parker | driver

 Riley | electrician

(3 rows)

SELECT * FROM (VALUES ('Harper', 'salesperson'),

 ('Parker', 'driver'),

 ('Riley', 'electrician'),

 ('Skyler', 'manager'))

 AS t(first_name, job_title)

WHERE job_title NOT IN ('manager');

 first_name | job_title

------------+-------------

 Harper | salesperson

 Parker | driver

 Riley | electrician

(3 rows)

We see that specifying NOT IN can save a bit of typing and make queries
simpler to read, especially if you are only looking to exclude a small number
of values.

Now let's assume Frogge Emporium wants to do exactly that. Their problem
is that they want to run a promotion, and they need to find all the email
addresses of customers from states where they do not have a supplier so that
they can send promotional items from the central warehouse.

This is what the table customer_contact_details looks like:

Table 2.1 Sample row from customer_contact_details

id email street_address city state country phone_no

100 jordan.barber@example.com Albany NY

United
States
of
America

And table suppliers looks like this:

Table 2.2 Sample row from suppliers

id company_name state country phone_no email

1
Omni
Consumer
Products

MI
United
States of
America

ocp@example.com

Therefore they come up with this query:

SELECT email

FROM erp.customer_contact_details

WHERE state NOT IN (SELECT state

 FROM erp.suppliers);

They select all emails from customer_contact_details where the
customer's state is not contained in the list of states from all suppliers.
However, when they run it, this happens:

 email

(0 rows)

Why do they get zero results when there are certainly customers in states that
do not have suppliers?

Let's say Frogge Emporium knows that they don't have suppliers in Kansas.
Here's an SQL query that checks for at least one customer in a state without
suppliers:

mailto:jordan.barber@example.com
mailto:ocp@example.com

.com

SELECT email

FROM erp.customer_contact_details

WHERE state = 'KS'

LIMIT 1;

 email

 river.smith@example.com

(1 row)

What is happening here is a consequence of how SQL treats NULL in
predicates. In our example, not all suppliers are in a US state, so we have
some suppliers with NULL in the field state. Let's check for at least one
supplier that is not in a US state:

SELECT *

FROM erp.suppliers

WHERE state IS NULL;

 id | company_name | state | country | phone_no | email

----+--------------+-------+---------+----------+-----------------

 2 | Yoyodyne | | Japan | | yoyodyne@example

(1 row)

Column state for this supplier is NULL. This causes the subquery SELECT
state FROM erp.suppliers to return at least one NULL value.

What is probably unexpected is that the predicate state NOT IN (SELECT
state FROM erp.suppliers) can never return TRUE if there is even one NULL
present. The expression evaluates to "unknown" if the subquery returns any
null values, effectively negating the predicate and leading to an empty result
set.

Why is that? Let's look at the logic of queries using NOT IN, considering
both cases: with and without NULL values.

No NULLs:

SELECT email, state

FROM erp.customer_contact_details

WHERE state NOT IN ('Fake state')

LIMIT 1;

 email | state

---------------------------+-------

 jordan.barber@example.com | NY

(1 row)

With NULLs:

SELECT email, state

FROM erp.customer_contact_details

WHERE state NOT IN ('Fake state', null)

LIMIT 1;

 email | state

-------+-------

(0 rows)

This is the same as writing NOT (state IN ('Fake state')) so basically
NOT (FALSE), therefore TRUE.

Adding a NULL makes the predicate unknown, because NOT (state IN
('Fake state', null)) evaluates to NOT (NULL), which is the same as
NULL, and so cannot be TRUE.

We must remember that SQL is a query language and not a high-level
programming language like Python where the equivalent 1 not in [2,
None] is True.

2.1.1 Performance implications

Postgres cannot optimize queries using NOT IN (SELECT …) well.
Specifically, it can't automatically convert such expressions into an anti-join
in the query plan, and chooses a hashed Subplan or plain Subplan. This
produces an inferior execution strategy as the hashed subplan works fast but
is only chosen for small result sets, while the plain subplan is very slow. This
means that this query execution plan may offer decent performance on a
small scale, but can slow down by whole orders of magnitude if you cross a
size threshold.

The PostgreSQL documentation on using EXPLAIN has some more
information on query plans: https://www.postgresql.org/docs/current/using-
explain.html

Lingo: "Anti-join"

Assuming we have tables a and b, an anti-join is a query for only the rows
from a that result in no rows being returned from a correlated subquery on b.
It comes from relational algebra, and the operation is usually expressed with
the predicate NOT EXISTS in PostgreSQL:
https://www.postgresql.org/docs/current/functions-
subquery.html#FUNCTIONS-SUBQUERY-EXISTS

2.1.2 Alternative

It is obvious that in most cases NOT IN (SELECT …), which can counter-
intuitively end up being NULL, would not be what you want. A way of writing
this query that can yield more predictable results would be the following
alternative which uses NOT EXISTS:

SELECT ccd.email

FROM erp.customer_contact_details ccd

WHERE NOT EXISTS (SELECT FROM erp.suppliers s

 WHERE ccd.state = s.state)

AND ccd.state IS NOT NULL;

 email

 river.smith@example.com

 drew.anderson@example.com

(2 rows)

This finally gives the correct results. It should also be faster to execute, as the
query planner this time chooses an anti-join. Here is what the NOT EXISTS
query plan looks like:

EXPLAIN SELECT ccd.email

FROM erp.customer_contact_details ccd

WHERE NOT EXISTS (SELECT FROM erp.suppliers s

 WHERE ccd.state = s.state)

AND ccd.state IS NOT NULL;

 QUERY PLAN

--

 Hash Anti Join (cost=19.45..319.48 rows=2 width=25)

 Hash Cond: (ccd.state = s.state)

 -> Seq Scan on customer_contact_details ccd (cost=0.00..300.00 rows=2

 width=28)

 Filter: (state IS NOT NULL)

 -> Hash (cost=14.20..14.20 rows=420 width=32)

 -> Seq Scan on suppliers s (cost=0.00..14.20 rows=420 width=32)

(6 rows)

The following alternative query explicitly demonstrates the anti-join
mechanism and allows you to better visualize how rows are getting excluded
based on the lack of matches:

SELECT ccd.email

FROM erp.customer_contact_details ccd

LEFT JOIN erp.suppliers s USING (state)

WHERE s.state IS NULL;

We can see that there are compelling reasons to not use the NOT IN syntax.
However, if you are positive that your subquery cannot return any nulls, or if
you are providing a list of constant values (such as in Listing 2.1), then it
should be safe to use.

Negative predicates can be an efficient way to exclude data but their usage
requires careful consideration of NULL values.

2.2 Selecting ranges with BETWEEN

BETWEEN is a convenient SQL feature that allows you to specify a range of
values in relative shorthand, such as this example that selects customers with
id from 1 to 100:

Listing 2.2 Example query with BETWEEN

SELECT *

FROM erp.customers

WHERE id BETWEEN 1 AND 100;

 id | first_name | middle_name | last_name | marketing_consent

-----+------------+-------------+-----------+-------------------

 1 | River | J | Smith | t

 2 | Drew | | Anderson | t

 ...

 100 | Jordan | A | Barber | t

(100 rows)

Frogge Emporium have decided they need a query that runs early every
morning to calculate the total amount of payments that they received during
the previous day. They set out to write this query as follows:

WITH t(today) AS (SELECT CURRENT_DATE::timestamptz)

SELECT sum(amount)

FROM erp.payments, t

WHERE tstamp BETWEEN t.today - INTERVAL '1 day' AND t.today;

This retrieves the current date and casts it to a timestamp, which gives us the
start of the current day at midnight. Then we sum up all payment amounts
from payments that happened between midnight yesterday and midnight
today. Running the query yields:

 sum

 5179739.95

(1 row)

So everything's fine, right? Well, not exactly.

We've forgotten that BETWEEN is inclusive of both ends of the range, the
upper and lower bound. That's easy to spot because, if you remember
from Listing 2.2, we got both 1 and 100 in what was returned, this is also
called a closed interval.

What does that mean for our results? Let's select yesterday's last
payment:

WITH t(today) AS (SELECT CURRENT_DATE::timestamptz)

SELECT max(tstamp)

FROM erp.payments, t

WHERE tstamp BETWEEN t.today - INTERVAL '1 day' AND t.today;

 max

 2024-05-27 00:00:00+01

(1 row)

And now let's select today's first payment:

WITH t(today) AS (SELECT CURRENT_DATE::timestamptz)

SELECT min(tstamp)

FROM erp.payments, t

WHERE tstamp BETWEEN t.today AND t.today + interval '1 day';

 min

 2024-05-27 00:00:00+01

(1 row)

Notice something? It's the same timestamp. So if payments occur exactly
at midnight then you'll count them twice, which is bad when you're
dealing with money.

Essentially this is the same query as:

WITH t(today) AS (SELECT CURRENT_DATE::timestamptz)

SELECT sum(amount)

FROM erp.payments, t

WHERE tstamp >= t.today - INTERVAL '1 day'

AND tstamp <= t.today;

Whenever we want to select rows for specific consecutive ranges, we need to
make sure that we don't include overlapping data at the ends of the range.
A safer way to write this is to exclude the upper bound with an explicit range
definition like the following (note the lack of an equals sign in the expression
AND tstamp < t.today):

WITH t(today) AS (SELECT CURRENT_DATE::timestamptz)

SELECT sum(amount), count(amount)

FROM erp.payments, t

WHERE tstamp >= t.today - INTERVAL '1 day'

AND tstamp < t.today;

 sum | count

------------+-------

 5179680.00 | 86400

(1 row)

Let's verify the difference by examining the total payment amounts and
number of rows:

WITH t(today) AS (SELECT CURRENT_DATE::timestamptz)

SELECT sum(amount), count(amount)

FROM erp.payments, t

WHERE tstamp BETWEEN t.today - INTERVAL '1 day' AND t.today;

 sum | count

------------+-------

 5179739.95 | 86401

(1 row)

It may cost you a few more keystrokes, but defining ranges explicitly is

cleaner and easier to read at a glance. The more complicated your queries
become, the more you'll appreciate clarity and understandability.

So remember, BETWEEN is shorthand for "greater than or equals AND less than
or equals":

Figure 2.1 BETWEEN is inclusive

2.3 Not using CTEs

Common Table Expressions (CTEs), or WITH-syntax, are useful bits of
syntactic sugar that allow you to tidy up your query code. If you have
complex queries, CTEs can make them more readable by breaking up the
SQL into smaller, more digestible pieces. Compared to subqueries, CTEs can
save you some repetition because you can reference them multiple times
within the same query.

Let's look at an example of a complicated query which is not very readable.
Frogge Emporium needs to compile a list of customer email addresses who
have already been notified that they have an unpaid invoice for purchased
services (i.e. not purchased items).

This is what the query initially looks like:

Listing 2.3 Non-CTE query example

SELECT DISTINCT email

FROM erp.customer_contact_details ccd

JOIN erp.invoices i ON i.customer = ccd.id

JOIN erp.order_groups og ON i.order_group = og.id

JOIN erp.sent_emails se ON se.invoice = i.id

JOIN erp.orders o ON o.order_group = og.id

WHERE ccd.id IN (

 SELECT customer

 FROM erp.invoices

 WHERE paid = false

)

AND i.order_group IN (

 SELECT order_group

 FROM erp.invoices

 WHERE paid = false

)

AND se.email_type = 'Invoice reminder'

AND o.item IS NULL;

It's functional but not great to read, because of its convoluted structure with
multiple joins, filters and subqueries. Running it with EXPLAIN ANALYZE to
see how it fares when it comes to efficiency, we get the following long
output:

Figure 2.2 Non-CTE query plan

U11i w (iosl:17472.)1 .. 17472.66 ro1·1s-1 ·ridl11.ll) l�du �l limi-l1,9lU9,19l ro111:8 looµs.1)
-> llested looi (cost=114il.l .. 1747l.66 ro1,1s=1 �ilth=ll) (actual 'i[::4l,9lU9.190 rois=B 1oois=11

·> lninrr �lrrir (roit=114ll.09..17m./1 !'01'5=1 \lidth:491 h•IJl i1mr:4/.�lUQ.1(1R r�r5:R iow,=11

11orkeis Plu1111ed; 1
IMers launc el: 1
·> %!· 1101 =1Mn�,,1Mn�9 ro',11=1111dtn =191 !ac ia1 t1mt=1�.86U®,m ro:11=4 \oop1=11

Sort Key; cc ,email
�ort Method: 1ui cl�ort ll�morr 1118

�ortcr �: �ort �1ct11od: �v1rnort lli:'f'ljr)I: m�

-;• ·ral el Hasn S8 i Jo'n (cosl:1l648,8U647l.07 rotJ!=1 ·ridtn=491 (actual time=4l7lU8,E4 roris,4 loois=ll
asn Conn: I· .r. 1stom,r = invoir,uustnmP I

•) lleslerJ looµ liosl:817MJ..1ll99,/9 01·1s:1 ·wirJU1.6I) lido�l l imi:l1,54U1.bll ro111:i louµs:1)
·) Para lel Has'1 loin (cost=8516.l6,. m�,49 ro:,s,1 w idtn,lll lactual time=lU2Ul,6ll 011s=4 loops=ll

H 51 ronl: (o.ordN_grnup = 1.orlrurnuil
·> rural el Se1 Scuu 01 1 ordeis o (cosl.Ul .. l8l®,59 wis./61 '1ialh.8) lutluul li111e.6.9l6.J.�1l ro1s.6/J oops.JI

f'ller: (item IS NUlll

O�I �tmovcd oy rnw: 11m
> raral el Hasn icost=8576.11..8516.l1 ro:,s,4 11idtn,l4) (uctuul time=l5.m .. l5.5l7 011s=6751oops=11

8udets: l048 lo iginar.y 1814] Batcnes: 1 (origi nally 11 ilemo y Usaye: 111KB
-:, H31h Jo1n (co1t·i110,�l, .M.21 roi'1-� ii1oth·1ll (3etv1 t1mc·11,!'118 .• 2),199 roi1•6/) loow11

M Cond; (',id = se.inioice]
-> Para\1'\ Hash Simi l in [rnst,417))8..81)9.5) rn11s,771 vidtn,3)1 (ncillal tim,,)4.7)U4.87) @s:/171 lon s,)]

lfosli 011u; I Lo1der_11 ouµ: i11voke1J,u1ue1)1rouµ)
•) Para \el Seq Scan on i11voim · (cost,8.00 .. ilil6l.59 ro1s,147059 l'idtn,l4) (actual time=0.G0U.7l4 ro1s,mm0 · oops=ll
·> �ara\lr. His� lwt:.1\1(11. Uf.(i1.19 i"Otis=m r1M·n,8] I -c1113 tim •=7 .198 .. 1.198 ro11:=l1ll looi1=/l

Ouckel1; 1048 Oi cl1�1; 1 lleioory Usu�e; 80t0
•> Parallel ,eq Sm on invoices ·nvoicei 1 lcost,0.00 .. 406l.59ro1.1s=7i511iath=31 (actual t' 1:=6.98U.051 ro'1s=6751oops=ll

r 1t0r: um PoW
Rors Removed oy fill er; 124l15

-) asn (cost,l6.88 .. l6.88 ra1s,1 l50 1.1' ath,81 (actua 1 t' 1 ,0.l81 .. 0.181 ro-B:1359 loops=l I

�UCKttl: llJ.18 63tChtl; l·l!�Or') Ui!�t; 6916
•) !eq Sn on sent Emai.s !e icost,0.00 .. 26.88 rois=1l50 �iath:Bl luctual fme,0.808..0.147 rou,1! 0 loops=l)

i iP: (typ, = '1 voice rim'nrl�r'::,mail_tyi,I
·> l11de1 St�11 usi119 tuslu111e _tu1 1l�d_M�i ls_µ�e)1 011 eu1lo.�1_tu11l� l_del�i s ttd lrnsl:0,29, ,0,l1 rows: 11iul11:ll) led i r0,0�, ,0.0&1 ru:11:1 \uoµs-8)

I 02x Co a: lid = i.cu!tomer)
-> P rallr1 Ha1h (i•n1 ,41(1l.lt4!llil.19 rn1"=l1111id n,8] (a11tuil timP=H�J.941 fmis=6111nop:,)l

Du ·kels ; l048 !Jlthes; 1 Me�o11 UsJ9e; 8�tD
•) Para"le· Seq Scan an invoices (cost,0.60 .. 4861.19 w.is,77S 11iath,31 (actual t'ill!:7.llU.791 rn1s,67S loops=ll

mw: 111or rw
Rais iemo'le oy filter; 1l4ll�

•> lnde1 Only !can using orleuroupiJ<ey on order_groups og [cost=6.4U.4 rOis=1 11iath=31 (actual t'i11!=0.00U.00l rn1s=11oops=81

Jnocx cono: IM· 1.oricr_iroii)
Heap funes: 0

Pla ning Jim,:).))9 ms

mulio11 I i111e; 49,141 s
145 rofs)

The planning and execution times are not that good, because that's the nature
of complicated queries. They're not only harder for us to understand but also
harder for Postgres's query planner to optimize.

Let us rewrite the query to return the same result, but with CTEs to see how
they can help. Here, we use CTE unp to get the unpaid invoices, and CTE ni
to get service orders ("no items"):

Listing 2.4 CTE query example

WITH

unp AS (

 SELECT id, customer c, order_group AS og

 FROM erp.invoices

 WHERE paid = false

),

ni AS (

 SELECT og.id

 FROM erp.order_groups og

 JOIN erp.orders o ON o.order_group = og.id

 WHERE o.item IS NULL

)

SELECT DISTINCT email

FROM erp.customer_contact_details ccd

JOIN unp ON unp.c = ccd.id

JOIN ni ON ni.id = unp.og

JOIN erp.sent_emails se ON se.invoice = unp.id

AND se.email_type = 'Invoice reminder';

Hopefully, the new query makes it a bit clearer that table invoices provides
customer and order_group data only for unpaid invoices, while table
order_groups isolates service orders by selecting rows with NULL item
values. We then join up our CTEs with table sent_emails and filter on
invoice reminder emails.

EXPLAIN ANALYZE of the new query yields the following plan:

Figure 2.3 CTE query plan

n1�U0 (co1H�lljU�Jo.1� i'O!l1"1 �Mt�-1,) (3CM t1�0- MlUl,1lo i'OtJI•; loo�1-11
·) ��!IP� loor Io :8� -�U�lU fO'l'1:1 !l°o): II t··r Ill fm�=1�-�l�,.l .1 l rowi=� oor =11

loin 'll!r: lo�.1a = o.oraerJou�I

;, uul11er l!er�e (c 1l-��;l 4U�1l,oll rons.11ia 11�11 lulu lime. �.01Ul,111 ror1s-� loo�s-11

tlorb1 �lonnto: 1
tin Im i-i, rnPn: 1

·> lort (rnst:irn.�Jrn.� ro11s=1 iiatn=� I (actual fo:1o.10Uo.Wl rm=� oois=ll

lOll �ei; cco.�]uil

�01·t Mloo: �u1 ct101·t)ltoo1·�: m�
IMP . : �ort 1Pl

i
1on: 111i .(�Ort �,morr mR

•) llestea loo� lcost�1W.oU�ll. i rows=11i'aln=411 (adual time=1UoUo.0l8 rom:4 loo�s=ll

·;, l1mu el llusl1 Jui11 (co1l.41��,)J.,n11,)o r :11.111illl1-W (itl ul lime.1J.�41J.,1o,�J1 OIi-� loo�i-11

�011 �ono: (o,oro0rJoii · 1nvo1c01,orot1·Jou�I
•) �nra11Pl IP��?. n orn,rs (ros!dU8)·.I� ro11s:lITT r1i ln:8) lirl11n1 t'mP=i.l)U.181 rm1s:ill 1oors=)I

filter: (item ll ll�l)

OIIS �e�JVeO U) fille1; 114m
·> �11·allel 101� (1101H1��,lU1��,1; ro111·l '11Mt�·1ul (octuol t1 ·lj�J%1 rnu·ol, loowll

8.1rKPls: 1�)� 8ntr.n,s: 1 li1mor� I snjP: 1Nt8

•) �asn Join (cost=�l.1U1��J8 raiis:4 ·11iatn:1ol (actual !i[e:1,m..l,81l ors:m loois=l)

�,111 lOII ; I i 11voim, ia . 1e, i11voicel

·> oral c\ �0� �m on 1nvokc1 (co1t=UU�l,,� rm=m w1ot�=W (ictuol t1m=UoU,1l� w111=ul, looi1=ll
mt,r: llim r,iiol

�011s iemove D) filte : mm

·) lld,11 (tUI :1o,l�Uo,88 ru:11:U� riu 11-�I (Jt u l l l[�:UITT JJ� ro'11:1))� u�i:11

�uiM1: l�l� a (��1: 1 1.1e�orr �)o��: Mt�
·) le� lr·2.n on SPnt_ mii1s SP lr.o: .:�.auo.88 ro1s:15:� 1fintn:8) lndllnl fo:U�U.140 Is:m i. is:])

fil er: (t��e = 1 nvoice eminaer 1 ::email tiie)

·) lr1uex lt�fl u 1111 1u10111r_co11 �cUeMlt�t�1 oi1 cu1to111�uuitac _ eti1l1 cc (101 =�JUj� ro·11:1 nlul11:l)) (ittual t1mi=U�U.©Jo 1u�1=1 luo�1:8)

lnlii ron�: (1o = 1nvo11�1,(u1t(11i')

•) lnnn n1� Im 11sin� o ierJrou�sJ�e� on ri1er_ 0111s o� lrnsM4U.48 rnrs=1 r1ioln:8) (ict11il im?:0.��U.00) rm1s=1 loo s:81

lnaex �on□; ha = invo11es,oraer �rou�I

ll�i f �t Ml; �

Honn'ni 1��: �Al1 �1
hecu ion rimP: ll.108 ms

(l4 rm1sl

That is a much simpler plan, and also planning and execution of the query
were faster too.

Lingo: "Selectivity"

Selectivity is the measure of how many rows we expect our query to retrieve
for the given predicate. So, "low selectivity" would be a relatively small
number of rows to scan and filter. In this context high selectivity probably
has the opposite meaning of what "being highly selective" means in daily
usage.

What has happened here is that the optimizer has determined that there is a
faster way to retrieve this data by reordering things. By applying filters with
low selectivity early on we weed out most of the data that we don't need to
go over.

The fact that we have now placed the CTEs first doesn't mean they will get
executed first. PostgreSQL has effectively inlined the CTEs, or merged them
into the main query's execution plan, to find an optimal order of execution
based on the statistics of table contents that it keeps. Also, we are replacing
IN operations with more optimized JOINs.

Note

Another benefit of CTEs is that they will get evaluated just once, regardless
of how many times they are referenced in the larger query or other CTEs.

Sometimes, when we know very well what our tables contain, and the
selectivity of each (sub)query, we can craft targeted CTEs. For example, if
we know that a really expensive query or function returns a few things that
are reused lots of times, and are important for determining the selectivity of
the rest of the query, we can specify for the CTE to be MATERIALIZED so that
we can force its evaluation early.

Finally, CTEs are generally easier to run standalone than a correlated
subquery, which can aid in optimization and troubleshooting, and they also
allow us to run recursive SQL queries.

Note

Take care not to choose names for your CTEs that clash with the names of
your existing objects, such as tables or views, because inside the query your
CTE name will override the object name and be used instead. This can lead to
wrong results and confusion. You should also avoid choosing names already
in use by SQL functions, etc.

2.4 Using uppercase identifiers

By default, PostgreSQL ignores case and always turns every identifier you
input into lowercase. So if you're coming from a certain database background
that likes to put everything IN_UPPERCASE, it may make sense for you to carry
this habit over into your daily Postgres usage.

However, this can end up causing problems and broken code. Postgres
preserves case only when you double quote it, and double-quoted identifiers,
also known as delimited identifiers, are case sensitive. So if you're being
inconsistent with your quoting, that can lead to errors. A very plausible way
this can happen is if you sometimes forget to double quote identifiers when
creating queries by hand, but the ORM you're using always double quotes
everything. Let's look at an example:

The DBA creates some tables:

SET search_path = erp, "$user", public;

CREATE TABLE Customers (

 id bigint PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 first_name text,

 middle_name text,

 last_name text,

 marketing_consent boolean DEFAULT false

);

CREATE TABLE "Invoices" (

 "Invoice ID" bigint PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 "Amount" numeric NOT NULL,

 "Customer" bigint NOT NULL REFERENCES Customers(id),

 "Paid" boolean NOT NULL DEFAULT false

);

This has resulted in the creation of two tables:

One is called customers (case-insensitive)
The other is called "Invoices" (case-sensitive)

If we attempt to use these tables the following will happen:

TABLE Customers;

 id | first_name | middle_name | last_name | marketing_consent

----+------------+-------------+-----------+-------------------

(0 rows)

This works fine. The table name has effectively been turned to lowercase, the
same as every other Postgres identifier:

\d customers

 Table "erp.customers"

 Column | Type | Collation | Nullable | Default

-------------------+---------+-----------+----------+-----------------------

 id | bigint | | not null | generated always as

 | | | | identity

 first_name | text | | |

 middle_name | text | | |

 last_name | text | | |

 marketing_consent | boolean | | | false

Indexes:

 "customers_pkey" PRIMARY KEY, btree (id)

Let's look at the other table:

TABLE Invoices;

ERROR: relation "invoices" does not exist

LINE 1: TABLE Invoices;

 ^

This doesn't work fine.

Note

The SQL command TABLE table_name can be used as shorthand for SELECT
* FROM table_name.

The same is also true for column names:

CREATE TABLE "Invoices" (

 "Invoice ID" bigint PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 "Amount" numeric NOT NULL,

 "Customer" bigint NOT NULL REFERENCES Customers(id),

 "Paid" boolean NOT NULL DEFAULT false

);

r".

Here we have created all mixed-case column names, which become case-
sensitive because they were quoted.

SELECT count(Customer)

FROM "Invoices";

ERROR: column "customer" does not exist

LINE 1: SELECT count(Customer)

 ^

HINT: Perhaps you meant to reference the column "Invoices.Custome

Forgetting to use the column identifier with double quotes results in an error.

We can see that using case in identifiers creates a usability issue, in the sense
that once you've done it, you have to always use the quoted names from
that point onwards:

SELECT count("Customer")

FROM "Invoices";

 count

Date"

 1

(1 row)

It is best practice if you don't quote identifiers. However, if the reason
why you're using quoted identifiers is for better alignment with your coworkers
—for instance, if they want reports where the columns are named like "Entry
Date" or "Reconciliation Amount"—you can satisfy them by simply using
column aliases in your queries used to generate their reports. You don't have to
put their fancy reporting names in your database, and they'll be none the wiser!

SELECT reconc_amt AS "Reconciliation Amount", entry_date AS "Entry

FROM financials

WHERE entry_date = '2023-02-02';

Yields:

 Reconciliation Amount | Entry Date

-----------------------+------------

 235.11 | 2023-02-02

(1 row)

2.5 Dividing INTEGERs

We have decided that we want to find out how many orders we have received
that are for physical stock items versus orders for services. Therefore we
write this query to select from table orders:

WITH

i AS (

 SELECT count(*) c

 FROM erp.orders

 WHERE item IS NOT NULL

),

s AS (

 SELECT count(*) c

 FROM erp.orders

 WHERE service IS NOT NULL

)

SELECT

i.c AS "Item orders",

s.c AS "Service orders",

i.c + s.c AS "Total",

i.c / (i.c + s.c) * 100 AS "Item order %",

s.c / (i.c + s.c) * 100 AS "Service order %"

FROM i, s;

der %

0

Which gives us:

 Item orders | Service orders | Total | Item order % | Service or

-------------+----------------+--------+--------------+-----------

 248650 | 1350 | 250000 | 0 |

(1 row)

Wait, that can't be right. Look at the last two columns, the math
doesn't check out, we do have orders.

What has happened here is that we divided two integers, an operation that
could give you a fractional result if performed by hand, but works out
differently in SQL.

The PostgreSQL documentation tells us the following about the division
operator /:

for integral types (int and bigint), division truncates the result towards
zero‚Äâ‚Äî‚Äâhttps://www.postgresql.org/docs/current/functions-
math.html#FUNCTIONS-MATH-OP-TABLE

This can give you wildly inaccurate numeric results where you least expect
them.

What we need to do is cast to a type that can be divided without this
consequence, such as a float or a double precision floating-point number:

SELECT

 10 / 4 AS "int division",

 pg_typeof(10 / 4) AS "-> output type",

 10::double precision / 4 AS "double division",

 pg_typeof(10::double precision / 4) AS "-> output type";

 int division | -> output type | double division | -> output type

--------------+----------------+-----------------+------------------

 2 | integer | 2.5 | double precision

(1 row)

But, you say, we only converted one of the integers into double and it
worked. What happens silently here is that Postgres automatically casts the
integer into a compatible type in order to divide it with a double precision
number.

Note

In PostgreSQL, you can CAST between types with the :: shorthand.
pg_typeof() is the function that we can use to find out the Postgres data type
of the value that is passed to it.

Armed with this knowledge, we now write our query as:

WITH

i AS (

 SELECT count(*)::float c

 FROM erp.orders

 WHERE item IS NOT NULL

),

s AS (

 SELECT count(*)::float c

 FROM erp.orders

 WHERE service IS NOT NULL

)

SELECT

i.c AS "Item orders",

s.c AS "Service orders",

i.c + s.c AS "Total",

round((i.c / (i.c + s.c) * 100)::numeric, 1) AS "Item order %",

round((s.c / (i.c + s.c) * 100)::numeric, 1) AS "Service order %"

der %

0.5

FROM i, s;

We get the correct result, with some casts and rounding applied as well:

 Item orders | Service orders | Total | Item order % | Service or

-------------+----------------+--------+--------------+-----------

 248650 | 1350 | 250000 | 99.5 |

(1 row)

Another somewhat related and potentially painful mistake is when you allow
division by zero to happen—something mathematics frowns upon,
and computers definitely don't like. You should generally never have
application code that allows this type of input to reach the database query, but
if you do, this is what is going to happen:

WITH zero AS (SELECT count(*) FROM erp.customers WHERE 1=2)

SELECT 10 / zero.count

FROM zero;

ERROR: division by zero

Note

Here WHERE 1=2 is an impossible condition that cannot be met so the
subquery's count() of zero rows returns 0.

What you can do now is make the result undefined (in other words NULL) if
you encounter a zero—as in our first column here—or you may decide to
replace the 0 with another value known to be
safe—such as 1 in our second column:

WITH zero AS (SELECT count(*) FROM erp.customers WHERE 1=2)

SELECT

 10 / NULLIF(zero.count, 0) AS nullified,

 10 / COALESCE(NULLIF(zero.count, 0), 1) AS replaced

FROM zero;

 nullified | replaced

-----------+----------

 | 10

(1 row)

Note

NULLIF returns null if the first argument equals the second, and COALESCE
returns the first non-null argument.

2.6 COUNTing NULL values

Something you need to be aware of when you're trying to count values or
rows is whether the column you're using for the count() aggregate is
nullable or not.

Here Frogge are trying to count the number of orders placed since the
beginning of the year. Their query looks like this:

SELECT count(item)

FROM erp.orders

WHERE placed_at > date_trunc('year', CURRENT_DATE);

and when they run it, they get the following result:

 count

 198908

(1 row)

However, some orders were not for physical items but for services. Those
orders don't have an item attached so their column item is NULL.

SELECT id, status, placed_at, item, service

FROM erp.orders

WHERE service IS NOT NULL

LIMIT 1;

 id | status | placed_at | item | service

--------+--------+------------------------+------+---------

 168521 | Placed | 2024-05-26 08:55:21+01 | | 21

(1 row)

Let's check how many orders they really have in total by counting rows
instead of items:

SELECT count(*)

FROM erp.orders

WHERE placed_at > date_trunc('year', CURRENT_DATE);

 count

 200000

(1 row)

This is because count() ignores NULL values (you can't count something
that isn't there), and we were counting using the nullable item column. In
this case, you need to count the entire row to get the correct result you want.

This also has an interesting side effect: you can use it to your advantage to
count what your percentage of orders for services are (knowing that item
orders will have a NULL service), like this:

SELECT round(count(service)::numeric

 / count(*)::numeric * 100, 1) AS "Service orders %"

FROM erp.orders

WHERE placed_at > date_trunc('year', CURRENT_DATE);

 Service orders %

 0.5

(1 row)

2.7 Querying indexed columns with expressions

When you have an index on a column, it makes certain types of queries
extremely fast. However, when you query the same indexed column using an
expression, such as passing it through a function or casting it so that the data
type doesn't match the index's data type, it can cause Postgres to not use the
index at all.

This is a serious performance issue—you are effectively paying the
price for having an index (such as more disk space usage, slower writes to the
table, etc. without benefiting from the index.

Let's see an example with our payments table which holds Frogge
Emporium's timestamped payment data. If we select payments from a
specific timestamp, we get an efficient and pretty much instant response:

EXPLAIN (ANALYZE, FORMAT YAML)

SELECT * FROM erp.payments

WHERE tstamp = '2023-10-18 03:40:34.000';

 QUERY PLAN

--

- Plan: +

 Node Type: "Index Scan" +

 Parallel Aware: false +

 Async Capable: false +

 Scan Direction: "Forward" +

 Index Name: "payments_tstamp_idx" +

 Relation Name: "payments" +

 Alias: "payments" +

 Startup Cost: 0.42 +

 Total Cost: 8.46 +

 Plan Rows: 2 +

 Plan Width: 31 +

 Actual Startup Time: 0.010 +

 Actual Total Time: 0.011 +

 Actual Rows: 0 +

 Actual Loops: 1 +

 Index Cond: "(tstamp = '2023-10-18 03:40:34+01'::timestamp with time

 zone)" +

 Rows Removed by Index Recheck: 0 +

 Planning Time: 0.051 +

 Triggers: +

 Execution Time: 0.022

(1 row)

This caused an Index Scan, which was very fast.

Now let's assume Frogge wants to make the query such that they don't have
to specify the timestamp in millisecond accuracy as above. They decide to
use the function date_trunc() to reduce the accuracy down to the level of
seconds. This query will return payments that took place during a specific
second:

EXPLAIN (ANALYZE, FORMAT YAML)

SELECT * FROM erp.payments

WHERE date_trunc('s', tstamp) = '2023-10-18 03:40:34';

 QUERY PLAN

--

 - Plan: +

 Node Type: "Seq Scan" +

 Parallel Aware: false +

 Async Capable: false +

 Relation Name: "payments" +

 Alias: "payments" +

 Startup Cost: 0.00 +

 Total Cost: 5589.00 +

 Plan Rows: 1250 +

 Plan Width: 31 +

 Actual Startup Time: 1.900 +

 Actual Total Time: 35.880 +

 Actual Rows: 1 +

 Actual Loops: 1 +

 Filter: "(date_trunc('s'::text, tstamp) = '2023-10-18 03:40:34+01'

 ::timestamp with time zone)" +

 Rows Removed by Filter: 249999 +

 Planning Time: 0.038 +

 Triggers: +

 Execution Time: 35.892

(1 row)

What happened here? We can see that this query did not use the index and
instead performed a full table scan, which was orders of magnitude slower.

The reason behind this is that the column is indexed against direct queries for
the timestamp values stored. Changing the predicate makes it no longer
match the index, and so that is not used.

One possible workaround is to move the transformation to the other side of
the predicate comparison operator, like this:

EXPLAIN (ANALYZE, FORMAT YAML)

SELECT * FROM erp.payments

WHERE tstamp >= '2023-10-18 03:40:34'::timestamptz

AND tstamp < '2023-10-18 03:40:34'::timestamptz + INTERVAL '1 s';

 QUERY PLAN

--

 - Plan: +

 Node Type: "Index Scan" +

 Parallel Aware: false +

 Async Capable: false +

 Scan Direction: "Forward" +

 Index Name: "payments_tstamp_idx" +

 Relation Name: "payments" +

 Alias: "payments" +

 Startup Cost: 0.42 +

 Total Cost: 8.44 +

 Plan Rows: 1 +

 Plan Width: 31 +

 Actual Startup Time: 0.014 +

 Actual Total Time: 0.015 +

 Actual Rows: 1 +

 Actual Loops: 1 +

 Index Cond: "((tstamp >= '2023-10-18 03:40:34+01'::timestamp with time

 zone) AND (tstamp < ('2023-10-18 03:40:34+01'::timestamp with time zone

 + '00:00:01'::interval)))" +

 Rows Removed by Index Recheck: 0 +

 Planning Time: 0.058 +

 Triggers: +

 Execution Time: 0.023

UTC+1'));

(1 row)

We now see that this query uses the index and benefits from full performance
again because we have moved the function from the column to the value to
be compared.

Also remember one of PostgreSQL's awesome features: indexes on
expressions. If we know that we will always be querying this column using
date_trunc, for example, to find all payments that took place during that
minute, we can use an expression index to include the function and speed up
those queries.

CREATE INDEX ON erp.payments(date_trunc('m', tstamp AT TIME ZONE '

Which can then be queried as follows:

SELECT * FROM erp.payments

WHERE date_trunc('m', tstamp AT TIME ZONE 'UTC+1')

 = '2023-10-18 03:40' AT TIME ZONE 'UTC+1';

Beware: This will create a lossy index which will not apply to queries that do
not use the same functions and casts that it was created with!

When a query applies a function or transformation to an indexed column, the
database has to evaluate the function for each row individually. This prevents
it from leveraging the index to locate matching values, as the transformed
data does not align with the indexed data. Consequently, the database has to
do extra work to process more rows.

2.8 Upserting NULLs in a composite unique key

UPSERT, short for ‚ÄúUPDATE` or `INSERT‚Äù, is the operation of entering
data into a table where you want to ensure that it's either updated if it already
exists or inserted if it doesn't. To apply this logic, you need to use a UNIQUE
constraint or index. In PostgreSQL, upserts can be performed using
INSERT… ON CONFLICT… or with the newer MERGE syntax.

To go hand-in-hand with a revamp of the inventory management front-end,
Frogge Emporium tasks a developer with developing an upsert query for the
following proposed inventory table to keep their stock levels accurate:

CREATE TABLE erp.inventory (

 product_id int NOT NULL,

 warehouse_id int,

 area text,

 quantity int NOT NULL,

 updated_at timestamptz NOT NULL DEFAULT now()

);

CREATE UNIQUE INDEX ON erp.inventory (product_id, warehouse_id, area);

The unique index created for the stock tracking is the combination of product,
warehouse and area. The idea is that each product can exist in multiple
warehouses, and be in different areas within that warehouse. We can see that
the table allows null in the area column because some products may just be
in the common stock area instead of a specific location like in the freezer.

The upsert query the developer came up with to test the concept leveraged the
ON CONFLICT DO syntax and looked like this:

INSERT INTO erp.inventory (product_id, warehouse_id, area, quantity)

VALUES (99999, 1, 'freezer', 10)

ON CONFLICT (product_id, warehouse_id, area) DO UPDATE

 SET quantity = EXCLUDED.quantity;

y,

Which returned:

INSERT 0 1

So far so good. Now let's try updating the quantity of product_id 99999
in warehouse_id 1 to 20 with this upsert:

INSERT INTO erp.inventory (product_id, warehouse_id, area, quantit

 updated_at)

VALUES (99999, 1, 'freezer', 20, now())

ON CONFLICT (product_id, warehouse_id, area) DO UPDATE

 SET quantity = EXCLUDED.quantity;

This returns:

INSERT 0 1

Let's check the inventory:

TABLE erp.inventory;

 product_id | warehouse_id | area | quantity | updated_at

------------+--------------+---------+----------+---------------------------

 99999 | 1 | freezer | 20 | 2024-10-28 21:04:26.04033.

 | | | |.8+00

y)

Okay, that seems to have updated the value, marking a successful upsert.

Let's put a quantity of this product in the common stock area of that
warehouse:

INSERT INTO erp.inventory (product_id, warehouse_id, area, quantit

VALUES (99999, 1, null, 5)

ON CONFLICT (product_id, warehouse_id, area) DO UPDATE

 SET quantity = EXCLUDED.quantity;

Which produces:

TABLE erp.inventory;

 product_id | warehouse_id | area | quantity | updated_at

------------+--------------+------+----------+------------------------------

 99999 | 1 | free.| 20 | 2024-10-28 21:04:26.040338+0.

 | |.zer | |.0

 99999 | 1 | | 5 | 2024-10-28 21:05:14.020143+0.

 | | | |.0

y,

Let's update this quantity to 7 now:

INSERT INTO erp.inventory (product_id, warehouse_id, area, quantit

 updated_at)

VALUES (99999, 1, null, 7, now())

ON CONFLICT (product_id, warehouse_id, area) DO UPDATE

 SET quantity = EXCLUDED.quantity;

Let's check:

TABLE erp.inventory;

 product_id | warehouse_id | area | quantity | updated_at

------------+--------------+------+----------+------------------------------

 99999 | 1 | free.| 20 | 2024-10-28 21:04:26.040338+0.

 | |.zer | |.0

 99999 | 1 | | 5 | 2024-10-28 21:05:14.020143+0.

 | | | |.0

 99999 | 1 | | 7 | 2024-10-28 21:07:57.067498+0.

 | | | |.0

Oops. What's happening here? If a product with the same id, warehouse_id,
and area already exists, its quantity is updated; otherwise, a new row is
inserted. However, we stumbled upon a critical issue that arises when NULL
values are involved.

The problem stems from how PostgreSQL handles NULL values in a
composite unique key. In SQL, a NULL value signifies the lack of a value or
"unknown". This means PostgreSQL (or any database, for that matter cannot
compare NULL values for equality. Therefore, the two rows with NULL in the
area column are treated as distinct, even though they look like they should
represent the same record in the database. This leads to the unexpected
creation of multiple rows with NULL in the area field instead of updating the
existing tuple.

Up until PostgreSQL 14, this issue created a real conundrum because the
behavior of ON CONFLICT when NULL values were involved was
unpredictable‚Äâ‚Äî‚Äâin some cases, it would insert new rows and in others
it would't. This could lead to application bugs and data integrity problems.

From version 15 onward, PostgreSQL allows you to address this issue by

ea)

y,

explicitly defining the conflict resolution behavior of ON CONFLICT with
unique constraints containing NULL fields. All you have to do is add the NULLS
NOT DISTINCT clause when creating the index. This changes the legacy
default behavior of treating NULL values as distinct and enables proper upserts
in this scenario.

Let's illustrate by deleting the bad row and recreating the index with the
new option:

DELETE FROM erp.inventory WHERE quantity = 7;

DROP INDEX erp.inventory_product_id_warehouse_id_area_idx;

CREATE UNIQUE INDEX ON erp.inventory (product_id, warehouse_id, ar

NULLS NOT DISTINCT;

Upserting now works:

INSERT INTO erp.inventory (product_id, warehouse_id, area, quantit

 updated_at)

VALUES (99999, 1, null, 7, now())

ON CONFLICT (product_id, warehouse_id, area) DO UPDATE

 SET quantity = EXCLUDED.quantity;

TABLE inventory;

 product_id | warehouse_id | area | quantity | updated_at

------------+--------------+------+----------+------------------------------

 99999 | 1 | free.| 20 | 2024-10-28 21:04:26.040338+0.

 | |.zer | |.0

 99999 | 1 | | 7 | 2024-10-28 21:22:07.914464+0.

 | | | |.0

With this index, the upsert behavior now ensures that rows with NULL in the
area column are considered duplicates if they match all other columns in the
unique constraint. The database will then properly update existing rows
instead of inserting new ones.

Although newer PostgreSQL releases offer this workaround, relying on NULL
in composite unique constraints is probably not a good practice. You may be
better off switching NULL with a meaningful value (e.g. 'common_area') or
restructuring the table's schema.

2.9 Selecting and fetching all the data

In general, you should not SELECT more columns than you need to perform
your query. Moreover, you should not fetch large amounts of data from the
database to the client side, and then perform operations such as sorting and
filtering outside of the database. Try to minimize the amount of data selected
and fetched at every level, and that will have a positive impact on the
performance of your queries.

Our developer wants to get the primary key of all tickets with status = 10,
but proceeds to SELECT * instead of SELECT id because they know that they
can just discard the columns they don't need in the application code. Let's
write some sample code to see if fetching all the results can really make a
difference in performance.

Let's do some prep work to get a clean Python environment running:

virtualenv ve

. ve/bin/activate

pip install psycopg

Now let's code both use cases, SELECT every column from the table versus
just the one we want.

Listing 2.5 fetch.py: Fetch all the columns

import psycopg, datetime

with psycopg.connect("dbname=frogge user=frogge") as conn:

 with conn.cursor(row_factory=psycopg.rows.dict_row) as cur:

 t1 = datetime.datetime.now()

 cur.execute('''SELECT *

 FROM support.tickets

 WHERE status = 10''')

 res = cur.fetchall()

 tkts = []

 for row in res:

 tkts += row['id'],

 t2 = datetime.datetime.now()

 print(f'"SELECT *" took {t2-t1} seconds.')

 with conn.cursor(row_factory=psycopg.rows.dict_row) as cur:

 t3 = datetime.datetime.now()

 cur.execute('''SELECT id

 FROM support.tickets

 WHERE status = 10''')

 res = cur.fetchall()

 tkts = []

 for row in res:

 tkts += row['id'],

 t4 = datetime.datetime.now()

 print(f'"SELECT id" took {t4-t3} seconds.')

Running the above code produces:

$ python3 fetch.py

"SELECT *" took 0:00:00.244571 seconds.

"SELECT id" took 0:00:00.093342 seconds.

From this, we can learn that selecting and fetching data that we then discard
incurs a performance penalty because of the overhead, both on the database
side and on the application side, because more data gets transferred,
marshaled into memory, etc. Also remember that this is just on our
development machine, over slower network connections it may make for an
even bigger difference in performance.

Even worse, our developer can make the mistake of fetching the entire table
"to avoid the hassle of writing SQL queries", because they're a good
developer and they know how to filter data efficiently on the application side.
Believe me, this is something that has actually been seen "in the wild".

Listing 2.6 fetch2.py: Fetch all the rows

import psycopg, datetime

with psycopg.connect("dbname=frogge user=frogge") as conn:

 with conn.cursor(row_factory=psycopg.rows.dict_row) as cur:

 t1 = datetime.datetime.now()

 cur.execute('''SELECT *

 FROM support.tickets''')

 res = cur.fetchmany(10000)

 while (res):

 tkts = []

 for row in res:

 if row['status'] == 10:

 tkts += row['id'],

 res = cur.fetchmany(10000)

 t2 = datetime.datetime.now()

 print(f'"SELECT *" with no predicate took {t2-t1} seconds.')

Let's run it:

$ python3 fetch2.py

"SELECT *" with no predicate took 0:06:41.919264 seconds.

This run time is disastrous‚Äâ‚Äî‚Äâgranted, this is an egregious example
with a very large table and the developer forgoing index use.

In real life, code like this usually results in the developer or end user
complaining to the IT manager that "PostgreSQL is slow", and leads to orders
of unnecessary top-tier hardware needed to speed up the bad query.

Use the database for what it's good at: Data retrieval! PostgreSQL has had
almost 30 years of query optimizations to benefit from.

Causing Index Scans vs. Index-Only Scans

If you are only selecting a column that is indexed, the operation will result in
a fast Index-Only Scan. Adding more columns to the selection will cause the
database to perform an Index Scan which will also read from the table and
not just the index, and this can be much slower. Keeping this in mind can be
especially useful when writing subqueries or CTEs that need to select the
minimum amount of data and be as optimized as possible.

2.10 Not taking advantage of checkers/linters/AI

2.10.1 Code checkers/linters

Every developer worth their salt knows that having a second pair of eyes (or
more) on your code is valuable because you can get additional insights or
identify errors that escaped your scrutiny. Unfortunately, it's not always easy
or feasible to find one or more people and show them your SQL query for
feedback.

However, there are second opinions that you can get for free because
there's software that can look at your code and comment. Even if you

think that mechanical eyes are worse than human eyes, at the very least you
lose nothing by passing your code through a checker or linter.

SQLFluff

SQLFluff is an SQL linter and code formatter that also supports Postgres.
Here is an example of how it can be used to catch syntax and formatting
errors, retrieved from the SQLFluff repository:

$ pip install sqlfluff

This installed our tool. We'll now create a query and save it to a file:

$ echo " SELECT a + b FROM tbl; " > test.sql

And now let's lint that query:

3 Improper data type usage
In this chapter

Avoiding using the wrong data type
Time zone / Daylight Savings shenanigans
Data types that should be avoided altogether

PostgreSQL is very rich in data types and probably supports more than most
databases. It even goes a step further, and lets you define your own data types
with their own indexes, functions and operations! We will now take a look at
some popular data types and how their use or misuse can lead to
consequential mistakes.

3.1 TIMESTAMP (WITHOUT TIME ZONE)

Speaking of data types, let’s begin with those used for storing date and time.
Timestamps are a really popular type that’s used to store both at the same
time. If you type in TIMESTAMP, PostgreSQL will by default assume that you
want TIMESTAMP WITHOUT TIME ZONE because that is a behavior required by
the SQL Standard.

Our friends at Frogge Emporium have decided to use TIMESTAMP to hold
when a customer service ticket was opened and when it was closed. Because
of the way their customer service system works, it stores the time a ticket was
opened at the local time of the customer’s location.

Let’s take for example this ticket, opened by a customer on the US West
Coast on October 28th, 2023 at 16:00 Pacific Daylight Time (8 hours behind
Universal Time Coordinate or UTC-8) and closed by a Customer Service
agent (who was in the UK) on October 29th, 2023 at 09:00 Greenwich Mean
Time (GMT or UTC+0):

-[RECORD 1]---

id | 132591

content | Kindly close our account, as we don't need it anymore. Thank you

status | 20

opened_at | 2023-10-28 16:00:00

closed_at | 2023-10-29 09:00:00

If we try to calculate the duration of how long it took to close the ticket, e.g.
for quality assurance purposes, we will get the following:

SELECT pg_typeof(closed_at - opened_at), closed_at - opened_at

FROM support.tickets

WHERE id = 132591;

Result is:

 pg_typeof | ?column?

-----------+----------

 interval | 17:00:00

(1 row)

17 hours? This is obviously wrong, as from the perspective of the customer,
the ticket would have been closed on October 29th, 2023 at 02:00 Pacific
Daylight Time (UTC-8), which is only 10 hours.

Why did we get this result? TIMESTAMP WITHOUT TIME ZONE, also known as a
naive timestamp, does not store time zone information. This means that
performing arithmetic (such as our subtraction here) between timestamps
entered at different timezones is meaningless because it will give the wrong
results.

Let’s now assume that this has been taken into account, and the application
developers have agreed with the database administrator to only store times in
the Europe/London time zone regardless of the application user’s location.
This way, calculations can be performed because everything is in the same
time zone.

Therefore our entry would become:

-[RECORD 1]---

id | 132591

content | Kindly close our account, as we don't need it anymore. Thank you

status | 20

opened_at | 2023-10-29 00:00:00

closed_at | 2023-10-29 09:00:00

The time the ticket was open was:

 pg_typeof | ?column?

-----------+----------

 interval | 09:00:00

(1 row)

Oops! What happened here is that in London, Daylight Savings Time (DST)
or summer time ended at 2:00 AM on October 29th, and the clocks were
turned back by one hour. So on the 29th, we effectively had 1:00 AM British
Summer Time (BST, UTC+1) followed by 1:00 AM GMT (UTC+0).

Even if we get around the Daylight Savings problem by using UTC
everywhere, it’s still wrong to use TIMESTAMP to store because the database
doesn’t know it’s storing UTC and it will be unable to convert between
timezones to produce the correct calculations.

The simplest way to solve this problem is to just use TIMESTAMPTZ or
TIMESTAMP WITH TIME ZONE as the data type. This way we can enter
timestamps at any time zone, and the database takes care of all conversions
for us when time calculations are needed. Now our table and data would look
as follows.

Inserting the data properly:

INSERT INTO support.tickets (content, status, opened_at, closed_at) VALUES

('Kindly close our account, as we don''t need it anymore. Thank you',

 '10',

 '2023-10-28 16:00 PDT',

 '2023-10-29 09:00 GMT');

Note

Notice that in the query above, we can insert an apostrophe without conflict
with the single quotes delimiting the string, by doubling it: ''.

Seen from a database client in the Europe/London time zone, this record is:

-[RECORD 1]---

id | 1

content | Kindly close our account, as we don't need it anymore. Thank you

status | 10

opened_at | 2023-10-29 00:00:00+01

closed_at | 2023-10-29 09:00:00+00

The duration calculation yields the correct result:

 pg_typeof | ?column?

-----------+----------

 interval | 10:00:00

(1 row)

What we can learn from this is that TIMESTAMP WITH TIME ZONE stores a
moment in time, which makes time arithmetic meaningful because you can
know how much time elapsed between two moments. By contrast, TIMESTAMP
WITHOUT TIME ZONE is more like you have taken a photo showing a calendar
and a watch, capturing the time and date with no additional context.

What’s also great about TIMESTAMPTZ is that while it displays in the client’s
time zone, you can ask PostgreSQL to display it at a specific time zone
according to what you need:

SELECT opened_at AT TIME ZONE 'PDT' AS "Ticket opened",

 closed_at AT TIME ZONE 'PDT' AS "Ticket closed"

FROM support.tickets;

Outputs:

 Ticket opened | Ticket closed

---------------------+---------------------

 2023-10-28 16:00:00 | 2023-10-29 02:00:00

Also, you’re not using any extra storage space, both TIMESTAMP types are 8
bytes in length. With its compact storage, you can use TIMESTAMPTZ as a
natural primary key for time series data — do you really need a surrogate
(artificial) key when it can be used to identify tickets uniquely? As an added
bonus, it also partitions and indexes wonderfully, so you can use it as a
practical partition key and use it to craft really efficient queries.

To summarize, TIMESTAMPTZ is the preferred data type for recording a
specific moment in time. The naive TIMESTAMP is of no use for time math, and

has no performance or storage advantage over the time zone-aware type.

3.2 TIME WITH TIME ZONE

For some data, it is sufficient to only capture the time without the date. So it’s
easy to assume that TIME WITH TIME ZONE or TIMETZ is a good choice for the
data field, after all, we saw previously that omitting the time zone can cause
problems sometimes.

Let’s assume that Frogge Emporium has a table storing the energy usage of
each of their branches, measured by a smart meter. The smart meter marks
the time of each reading and the data ingested from it is stored in a TIMETZ
column. For branch 41, we have the following consecutive readings:

 branch_id | reading_time | reading | unit

-----------+--------------------+---------+------

 41 | 01:17:27.612383+01 | 54921.8 | kWh

 41 | 01:17:21.356247+00 | 54988.0 | kWh

The first and second times we recorded sit across the DST boundary. We
know that they are about 1 hour apart, but let’s see what happens if we try to
subtract them to find the interval between them:

SELECT '01:17:27.612383+01'::timetz - '01:17:21.356247+00'::timetz;

Results in:

ERROR: operator does not exist: time with time zone - time with time zone

LINE 1: select '01:17:27.612383+01'::timetz - '01:17:21.356247+00'::...

 ^

HINT: No operator matches the given name and argument types. You might

 need to add explicit type casts.

Okay, so we notice that the offset stored can vary with Daylight Savings and
that we cannot perform time math with this type. From this, we can
understand that TIMETZ has questionable usefulness. If we use the (naive)
TIME data type instead, we will run into the same issues performing
calculations across DST boundaries as we have just seen with naive
TIMESTAMP. The fact of the matter is that, in the real world, time zones have
little meaning without dates to provide the necessary context.

In short, TIMETZ is included in PostgreSQL just for SQL Standard
compliance. As it also takes up 8 bytes of storage space, there’s really no
reason to ever use it, and it’s recommended to use TIMESTAMPTZ instead.

3.3 CURRENT_TIME

All right, CURRENT_TIME is not exactly a data type, but it all ties nicely
together with the previous section about TIME WITH TIME ZONE.

current_time is a time function that returns the current time of day as the
data type TIME WITH TIME ZONE:

SELECT CURRENT_TIME, pg_typeof(CURRENT_TIME);

Returns:

 current_time | pg_typeof

--------------------+---------------------

 20:46:27.094953+00 | time with time zone

If you decide to use CURRENT_TIME, you will face the same problems that
using TIMETZ incurs. It’s a cleaner solution to use a timestamp which
represents that specific moment in time. If you don’t need the date part
afterward, you can just discard it either with EXTRACT() or date_part(), or
programmatically on your application’s side. The space used for storage of
the field will be the same anyway.

In order to use the correct date/time construct, you need to be aware of what
each function returns:

Table 3.1 PostgreSQL time functions and return types

Function Return Type Sample output

CURRENT_TIMESTAMP or
now()

timestamp with time

zone

2023-11-20

21:03:34.349275+00

CURRENT_DATE date 2023-11-20

CURRENT_TIME time with time zone 21:03:34.349275+00

LOCALTIMESTAMP
timestamp without

time zone

2023-11-20

21:03:34.349275

LOCALTIME
time without time

zone
21:03:34.349275

CURRENT_TIME and the data type it returns, TIMETZ, are just not very useful
and you should probably use something else that will better match your use
case from the above table.

You can find more information on date/time functions in the PostgreSQL
documentation at: https://www.postgresql.org/docs/current/functions-
datetime.html

3.4 CHAR(n)

Let’s now discuss PostgreSQL character types, or what you use to store
strings of text inside the database, beginning with CHAR(n) or CHARACTER(n).
This is a fixed-length, blank-padded textual type — this means that it is
always of length n as declared and that if the string is less than n characters
long, the rest of the field is padded with blank characters. You should
generally avoid using CHARACTER(n), and it will become apparent in the next
few paragraphs why.

Note

Because it’s a blank padded character type of length n, it is also known as
type BPCHAR(n). This was previously only used as an internal type
designation, but it is now documented, starting with PostgreSQL 16.

This is what the string 'postgres' looks like inside a CHAR of length 10:

SELECT 'postgres'::CHAR(10);

 bpchar

 postgres

(1 row)

To make what we’re looking at a bit clearer, this is what’s really happening
(where blanks are represented by ␣):

Figure 3.1 String padding with CHAR(10)

Because 'postgres' is 8 characters long, 2 blank characters are added at the
end in order to pad out the field to length 10. These padding spaces are
ignored — or treated as semantically not significant — when comparing
strings like so:

SELECT 'postgres'::CHAR(10) = 'postgres'::CHAR(20);

 ?column?

 t

(1 row)

But beware: Padding is not ignored when performing pattern matching with
LIKE and regular expressions (regex)!

SELECT 'postgres'::CHAR(10) LIKE '%ostgres';

 ?column?

 f

(1 row)

LIKE does not match "a string ending in ostgres " because our CHAR(10)
value ends in two blank characters.

Similarly, regular expression matching "string ending in ostgres " will fail:

SELECT 'postgres'::CHAR(10) ~ '.*ostgres$';

 ?column?

 f

(1 row)

We see that the same is true for POSIX regular expressions using the ~ regex
match operator.

Another annoyance is that if you cast a string that is longer than n to a
CHAR(n), then it will be truncated with no warning or error raised, as this is a
behavior required by the SQL Standard!

SELECT 'I heart PostgreSQL'::CHAR(10);

 bpchar

 I heart Po

(1 row)

Even if you need to enforce that the length of a string in a column is exactly n
characters, using CHAR(n) is not the proper way to do that, as it will happily
accept shorter strings.

What’s even worse with this data type is that internally in PostgreSQL it’s
actually not even stored as a fixed-width field. As, depending on the
character encoding, characters may need more than one byte to store, the
stored string is represented as a variable-length value on disk. This means
that you can simply end up wasting disk space storing irrelevant blank
spaces, because these are explicitly stored.

The performance implication is that when you use CHAR(n), your server
spends extra computation time stripping spaces in order to perform string
operations and comparisons.

Finally, indexes created for CHAR(n) columns may not work for queries with
a TEXT parameter passed to the database from a PostgreSQL connector or
driver (similarly to what we have seen in Chapter 2, section "Querying
indexed columns with expressions").

The bottom line here is: for almost every use case, you should just go ahead
and use TEXT, the variable unlimited length textual data type (confusingly,
also known as VARCHAR with no limit specification). TEXT gives you more
flexibility by not restricting you further down the line, and can give a
performance advantage over fixed-length CHAR types.

3.5 VARCHAR(n)

CHARACTER VARYING(n) or VARCHAR(n) is a variable-length field for textual
data with a length limit, so you can store any string up to that length. This
means that inserting longer strings will result in an error:

CREATE TEMP TABLE test1 (col VARCHAR(5));

CREATE TABLE

INSERT INTO test1 VALUES ('12345678');

ERROR: value too long for type character varying(5)

Weirdly, if the extra characters beyond n are spaces, the string will be
truncated silently to length n with no error reported, and this is something
that the SQL Standard dictates:

INSERT INTO test1 VALUES ('1234 ');

INSERT 0 1

TABLE test1;

 col

 1234

We see that the string inserted was '1234 ', 5 characters, ending in a space.
These behaviors are shared with CHAR(n). Similarly, however, if a longer
value is cast to VARCHAR(n), it’s truncated without warning or error:

SELECT 'Just use TEXT'::VARCHAR(10);

 varchar

 Just use T

(1 row)

In contrast, VARCHAR(n) doesn’t store any blank padding at the end of the
string, so the issues of waste of storage space and string comparisons that we

saw with CHAR(n) are avoided.

However, you are again getting absolutely no benefit by enforcing a length
limit, as the storage on disk is identical to TEXT. Even worse, just when you
think you have everything sorted out, with your table suppliers and its
column company_name VARCHAR(50), along comes this supplier, and they’re
annoyed that they don’t see their full company name when they log into your
portal.

SELECT length('Peterson''s and Sons and Friends Bits & Parts Limited');

 length

 52

(1 row)

Instead of having to resize your column with ALTER TABLE and deal with all
the locking needed by the DDL, never mind the fact that shrinking down to a
smaller limit is impossible, using VARCHAR(n) is more trouble than it’s worth.

If you positively want to restrict the length of the field, let’s say for
compliance reasons, just enforce a CHECK constraint, which you can then
change easily. CHECK integrity constraints specify requirements for the value
that can be stored in a column, like so:

DROP TABLE test1;

DROP TABLE

CREATE TEMP TABLE test1 (col TEXT CHECK(length(col)<=5));

CREATE TABLE

INSERT INTO test1 VALUES ('12345678');

ERROR: new row for relation "test1" violates check constraint

 "test1_col_check"

DETAIL: Failing row contains (12345678).

Alternately, you can use CREATE DOMAIN over the TEXT data type to enforce
constraints. Domains are data types with constraints already specified that are
useful for not repeating your CHECK definitions.

Again, the bottom line here is don’t use the VARCHAR(n) type: it can end up
restricting you in a way that is difficult or tedious to circumvent, and it has no

performance advantage over the unrestricted kind, so you should just use
TEXT.

Note

More information on character types in PostgreSQL — be sure to check the
tip about performance: https://www.postgresql.org/docs/current/datatype-
character.html#DATATYPE-CHARACTER

Type BPCHAR

Also documented since PostgreSQL 16, the type BPCHAR with no length
specification is for storing variable unlimited length blank-trimmed strings.
Like VARCHAR, BPCHAR also accepts strings of any length, but trailing spaces
are semantically not significant. Beware that this means it has significantly
different behavior to VARCHAR.

Let’s illustrate the difference between BPCHAR and VARCHAR in how they treat
trailing whitespace:

CREATE TEMP TABLE trailing_ws (v VARCHAR, b BPCHAR);

CREATE TABLE

INSERT INTO trailing_ws VALUES ('vvv ', 'bbb ');

INSERT 0 1

SELECT v, ('vvv' = v), b, ('bbb' = b) FROM trailing_ws;

 v | ?column? | b | ?column?

--------+----------+--------+----------

 vvv | f | bbb | t

(1 row)

From this, we can see that BPCHAR ignores the trailing spaces and treats
'bbb ' with 3 trailing spaces the same as 'bbb' whereas VARCHAR thinks
the strings 'vvv ' and 'vvv' differ.

3.6 MONEY

Frogge Emporium wants to store payment amounts for the payments they
receive so, naturally, for this they are considering to use the data type MONEY.

It can store a currency amount with some specific fractional precision set by
the database. They create the following table:

CREATE TABLE erp.payments (

 id bigint PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 tstamp timestamp with time zone NOT NULL,

 amount money NOT NULL,

 invoice bigint NOT NULL

);

Inserting a sample payment:

INSERT INTO erp.payments (tstamp, amount, invoice)

VALUES (now(), 99.99, 0);

INSERT 0 1

TABLE erp.payments;

 id | tstamp | amount | invoice

----+-------------------------------+--------+---------

 1 | 2023-11-20 21:25:12.501561+00 | £99.99 | 0

(1 row)

Let’s unpack what happened here: in the writer’s sample database,
PostgreSQL’s locale setting LC_MONETARY has inherited the system default of
en_GB, which selects the British Pound (GBP). So the database has assumed
we inserted £99.99 in that currency. This is a bad initial sign, MONEY doesn’t
actually store the currency type, but goes with whatever is configured on your
server.

Notwithstanding that, what happens if we want to retroactively apply a 25%
discount on all of the customer’s payments as a token of appreciation?
Calculating that should be simple. After all, we know that the discount
equals:

SELECT 99.99 * 0.25;

 ?column?

 24.9975

(1 row)

So let’s apply this to the value stored in our table:

SELECT amount * 0.25

FROM erp.payments

WHERE id = 1;

 ?column?

 £25.00

(1 row)

Er, oops. MONEY cannot handle fractions of a penny or a cent, or any other
denomination, so you will end up losing money, which is unacceptable for
most intents and purposes. From this, it is clear that MONEY will not have the
required accuracy for currency conversions either, where rounding is not an
option.

It turns out that MONEY is, counter-intuitively, a rubbish type for storing
monetary data.

Suitably, the MONEY data type is happy to accept garbage input:

SELECT ',123,456,,7,8.1,0,9'::MONEY;

 money

 £12,345,678.11

(1 row)

Accepting invalid input into a monetary data type is astoundingly bad. Is this
really a data type you want to utilize inside your database? The reality is that,
for these reasons, the PostgreSQL core developers have tried to deprecate
MONEY multiple times, and every time it’s been done, there have been
persistent requests to bring back the type because some people had existing
databases using it, and did not want to change them to migrate to a more
sensible type.

Note

Beware that you should not use any floating point number types, such as real
or double precision for handling money because those have the potential
for rounding errors. By definition, these are inexact numeric types and the
approximations of numbers that they offer are not suitable for storing exact
amounts, such as currency.

The proposed solution is to just use NUMERIC instead of MONEY, and it’s also a
very good idea to store the currency associated with the monetary value in
another adjacent column on the table.

Tip

There is no difference between NUMERIC and DECIMAL in PostgreSQL.

3.7 SERIAL

SERIAL is a PostgreSQL extension, that is, a non SQL standard way to ask the
database to create an auto-incrementing integer field. The same applies for its
bigger brother BIGSERIAL, which auto-increments a BIGINT. It used to be a
useful shorthand, but today it is actually more trouble than it’s worth. To
elaborate, let’s see how it works by creating a table with a SERIAL primary
key:

CREATE TEMP TABLE transactions (

 id SERIAL PRIMARY KEY,

 amount numeric NOT NULL);

CREATE TABLE

\d transactions

 Table "pg_temp_4.transactions"

 Column | Type | Collation | Nullable | Default

--------+---------+-----------+----------+----------------------------------

 id | integer | | not null | nextval('transactions_id_seq'::

 | | | | regclass)

 amount | numeric | | not null |

Indexes:

 "transactions_pkey" PRIMARY KEY, btree (id)

As expected, it automatically created a sequence transactions_id_seq to
generate values for the id column.

Now let’s give permission to another user to use this table:

CREATE USER jimmy;

CREATE ROLE

GRANT ALL ON TABLE transactions TO jimmy;

GRANT

Let’s see if jimmy can insert into this table by switching roles:

SET ROLE jimmy;

SET

INSERT INTO transactions (amount) VALUES (10.00);

ERROR: permission denied for sequence transactions_id_seq

Other users cannot insert into the table even if we have granted them this
privilege because they don’t have permission to use the automatically created
sequence. This is a major shortcoming - permissions for sequences created
via the use of SERIAL need to be managed separately from the actual table.

More worryingly, if you use CREATE TABLE … LIKE to create a similar table,
the new table will use the same sequence!

CREATE TEMP TABLE new_tx (LIKE transactions INCLUDING ALL);

CREATE TABLE

\d new_tx

 Table "pg_temp_4.new_tx"

 Column | Type | Collation | Nullable | Default

--------+---------+-----------+----------+----------------------------------

 id | integer | | not null | nextval('transactions_id_seq'::r.

 | | | |.egclass)

 amount | numeric | | not null |

Indexes:

 "new_tx_pkey" PRIMARY KEY, btree (id)

This is unexpected, and is probably not what you want. It also has the
consequence that you can’t drop the original table because the sequence the
new table uses depends on it.

In order to avoid these issues you can use identity columns instead of the
serial types, like this:

DROP TABLE new_tx;

DROP TABLE

CREATE TEMP TABLE new_tx (

 id int GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,

 amount numeric not null

);

CREATE TABLE

\d new_tx

 Table "pg_temp_4.new_tx"

 Column | Type | Collation | Nullable | Default

--------+---------+-----------+----------+----------------------------------

 id | integer | | not null | generated by default as identity

 amount | numeric | | not null |

Indexes:

 "new_tx_pkey" PRIMARY KEY, btree (id)

With an identity column, you don’t need to know the name of the sequence in
order to manipulate it:

ALTER TABLE new_tx ALTER COLUMN id RESTART WITH 1000;

ALTER TABLE

INSERT INTO new_tx (amount) VALUES (10.00);

INSERT 0 1

TABLE new_tx;

 id | amount

------+--------

 1000 | 10.00

(1 row)

If you use the CREATE TABLE … LIKE construct with a table that has identity
columns, the new table will get its own new sequences, so you won’t face
any issues.

As a final word, if your application needs to generate a serial sequence of
identifiers with no gaps, e.g. for receipt numbers, as required in some
localities, it is better to generate the sequence on the application side in order
to guarantee correctness. After all, PostgreSQL sequences will generate new
numbers even for transactions that are not committed and then rolled back,
which means that you’ll then have to find the actual last identifier in the
table, and reset the sequence to serve the next number.

3.8 XML

Let us begin by acknowledging the fact that PostgreSQL does offer the
option of using the data type XML, however ill-advised that may be, and many
of the same arguments against using XML outside of the database also apply
here.

Starting with the issues independent of the database, XML as a document
format offers the worst of both worlds: it is basically as, or less efficient than
a flat text file, and can sometimes be just barely human readable, just a cut
above a binary data file.

Some more practical reasons to avoid using XML:

It mandates having a single root element, which means that things like
concatenation of XML content require specific parsing and become
much harder.
It uses the concept of namespaces and introduces the additional problem
of namespace collision handling.
As a text-based format, it can allow inconsistencies in the textual
representation of numeric data. One good example is including numbers
that were entered at different locales, where there’s a good chance that
things like the decimal divider rules and separator will be different.
It simultaneously supports multiple different ways of escaping
characters, and the rules on escaping differ whether you’re inside text,
an attribute, a comment, CDATA, etc.
The likelihood that you will receive badly formed XML and be forced to
parse it anyway. The probability of someone editing XML by hand may
be higher than someone editing JSON data, which is usually used for
serializing/deserializing application objects through conversion library
functions.
All of the above don’t even get into why XML is a bad choice for your
application, because of the memory allocation nightmares that are
involved in parsing it, which mean you need to examine the advantages
and disadvantages of DOM versus SAX/streaming parsers, etc.

Additionally, on the database side, and specifically in PostgreSQL:

The DOCTYPE Document Type Declaration (DTD) is problematic as it
requires an external or inline DTD definition (that will be entirely

irrelevant to your database). PostgreSQL does not validate input values
against it, and has no support for other XML schema languages such as
XML Schema.
Character encoding, as specified in the XML declaration, may actually
be different to the character set that the XML text was saved in.
Complicating matters even more, you may have different character
encodings on the client and server side, as well as on the XML data side.
By default, PostgreSQL converts all character data passed between
client and server in both directions, so this will include the string
representations of values in your XML, and it may render the XML
encoding declaration invalid. This makes it your responsibility to ensure
that all three encodings and the XML declaration are aligned.
The same goes for the language identification attribute xml:lang, it is
simply irrelevant inside a PostgreSQL database.
There are no applicable comparison operators for the XML type, as a well-
known and trusted comparison algorithm for XML data does not exist,
even outside of Postgres. provide comparison operators. This means that
you cannot retrieve rows by comparing an XML column against a search
value. So the main option you’re left with is converting everything to
TEXT and comparing strings, which is less than ideal.
XML is queryable using XPath 1.0, but this is a moot point, as the type is
not indexable. Compare and contrast to JSONB, which is very well
indexable using the GIN and GIST index types.
It is very verbose, which makes for a lot of redundant bytes and
consequently a waste of storage space.
In PostgreSQL, it offers no advantages over the much more compact
notation of the same data as JSON. Consider this fragment, which
doesn’t even include the basic overhead and declarations needed to be
considered an XML document:

SELECT

'<property>

 <key>color</key>

 <value>00000</value>

</property>'::XML,

pg_column_size(

'<property>

 <key>color</key>

 <value>00000</value>

</property>'::XML

);

 xml | pg_column_size

--------------------------+----------------

 <property> +| 72

 <key>color</key> +|

 <value>00000</value>+|

 </property> |

(1 row)

compare this to a more stripped down way to represent essentially the same
data:

SELECT

'{"color":0}'::JSON,

pg_column_size(

'{"color":0}'::JSON

);

 json | pg_column_size

-------------+----------------

 {"color":0} | 15

(1 row)

Note

pg_column_size() is the function we use to measure the space in bytes used
to store any individual data value.

In conclusion, XML is error-prone, inefficient and slow. Don’t use XML for
any heavy lifting, especially inside your Postgres database. You will be much
better off using JSON, or even better, JSONB for your structured data needs.
You can find more on JSONB inside the PostgreSQL Documentation:
https://www.postgresql.org/docs/current/datatype-json.html

3.9 Summary

There is no benefit to using TIMESTAMP (WITHOUT TIME ZONE), as it can
lead to time calculation errors due to lack of time zone and DST context.
TIMESTAMP WITH TIME ZONE is the proper data type for recording
timestamps as specific moments in time.

TIMETZ and CURRENT_TIME have questionable usefulness because time
zones have no meaning without the context of dates. Again, it is
preferable to use TIMESTAMPTZ even if we don’t need to display the date
part of the timestamp.
MONEY doesn’t store which currency, it suffers from a limited and flawed
implementation, and should be avoided in favor of using NUMERIC or
other number formats that can accurately store exact values, potentially
in conjunction with storing the currency as a separate column.
The two serial types SERIAL and BIGSERIAL have been effectively
superseded by identity columns, which have more predictable behavior
when it comes to role ownership and use of sequences, and clarity
regarding which table the sequence belongs to.
You don’t save storage space by using the limited character types
CHAR(n) and VARCHAR(n), and the whitespace stored with CHAR(n) can
be detrimental to performance. Additionally, you run the risk of running
into SQL quirks and painting yourself in a corner with maximum
lengths — TEXT is the better choice.
XML is a terrible choice for document storage, unless you’re just copying
immutable XML data inside the database — if you intend to
query/manipulate the data, you should use JSON(B).

4 Table and index mistakes
In this chapter

Table inheritance: an unusual feature
Why partitioning is important and how to get it right
Using the right type of key and index for your tables

Some PostgreSQL particularities give it additional flexibility compared to
other Relational Database Management Systems (RDBMSs) and can enable
powerful and expressive database designs. However, these same features also
have the potential to become pitfalls when coming to Postgres with
preconceptions from other systems or if the documentation is misunderstood.

4.1 Table inheritance

At the time of writing, PostgreSQL describes itself as a "powerful, open
source object-relational database system" and this may throw some people
off, as it seems to be a description from another era in computing. It may well
be an outdated reference to object-oriented programming (OOP) which, as
some of you may remember, used to be all the rage in past years. The
PostgreSQL project was very keen on showing support for OOP and one of
the advanced features that were particularly relevant to OOP was table
inheritance.

Simply put, table inheritance lets you create tables that inherit columns from
other tables — the same way that object classes might inherit variables and
methods from their parent classes. Using it is as simple as CREATE TABLE (…)
INHERITS ….

For example, if we think of a meeting as a kind of event, then we can create a
table meetings that includes the attributes of table events:

Listing 4.1 Table inheritance

CREATE SCHEMA calendar;

SET search_path = calendar, "$user", public;

CREATE TABLE events (

 id int PRIMARY KEY,

 scheduled_time timestamptz,

 status smallint

);

CREATE TABLE

CREATE TABLE meetings (

 invited_emails text[],

 confirmed_emails text[],

 location text

) INHERITS (events);

CREATE TABLE

\d events

 Table "calendar.events"

 Column | Type | Collation | Nullable | Default

----------------+--------------------------+-----------+----------+---------

 id | integer | | |

 scheduled_time | timestamp with time zone | | |

 status | smallint | | |

Number of child tables: 1 (Use \d+ to list them.)

\d meetings

 Table "calendar.meetings"

 Column | Type | Collation | Nullable | Default

------------------+------------------------+-----------+----------+---------

 id | integer | | |

 scheduled_time | timestamp with time zo.| | |

 |.ne | | |

 status | smallint | | |

 invited_emails | text[] | | |

 confirmed_emails | text[] | | |

 location | text | | |

Inherits: events

So we see that the relationship between the tables has been established and is
being reported by PostgreSQL. Let’s see what we can do now — what
happens if we insert a meeting?

INSERT INTO meetings (id, scheduled_time, status, invited_emails,

 location)

VALUES (1981, '2024-02-01 09:00', 10,

 ARRAY['kerry.moss@example.com', 'morgan.avenal@example.com'],

 'https://webmeetings.example.com/pas/ok/1981');

INSERT 0 1

TABLE meetings;

-[RECORD 1]----+---

id | 1981

scheduled_time | 2024-02-01 09:00:00+00

status | 10

invited_emails | {kerry.moss@example.com,morgan.avenal@example.com}

confirmed_emails |

location | https://webmeetings.example.com/pas/ok/1981

TABLE events;

-[RECORD 1]--+-----------------------

id | 1981

scheduled_time | 2024-02-01 09:00:00+00

status | 10

So we see that inserting a meeting also generates a row in events with the
corresponding inherited fields filled in. I guess that’s pretty neat, and it must
have seemed like a good idea before Object-Relational Mapping tools
(ORMs) started appearing.

Before PostgreSQL 10, table inheritance was also used to implement
partitioning by defining the relationships between the parent table and the
(child) partition tables. However, since PostgreSQL 10, when declarative
table partitioning was introduced, there has been practically no reason to use
the much more complicated inheritance path for partitioning tables.

Let’s see what happens if we decide that this table will grow to be too large,
so we try to create a partitioned version, and attach the current table as the
first partition:

CREATE TABLE events_partitioned (

 id int,

 scheduled_time timestamptz,

 status smallint

) PARTITION BY RANGE (scheduled_time);

CREATE TABLE

ALTER TABLE events_partitioned ATTACH PARTITION events

FOR VALUES FROM ('2000-01-01') TO ('2025-01-01');

ERROR: cannot attach inheritance parent as partition

Whoopsie! Inheritance is fundamentally incompatible with declarative
partitioning. You cannot inherit from a partitioned table and you cannot add
inheritance to a partitioned table. So what can you do now that you’re stuck
with table inheritance? You would need to find some way to undo it.

Fortunately, it isn’t all that complicated: you can simply replace the
relationship defined by table inheritance with foreign key relationships. You
shouldn’t really have second thoughts about this because, by forfeiting table
inheritance, you won’t be missing out on any important functionality anyway.

All you need to do is to create a new table to hold the data, and add the
foreign key column. Let’s do this for the meetings table:

CREATE TABLE new_meetings (LIKE meetings);

CREATE TABLE

ALTER TABLE new_meetings ADD event_id int;

ALTER TABLE

Then, you copy the data from the old table into the new one (which may take
a long time):

INSERT INTO new_meetings

SELECT *, id FROM meetings;

INSERT 0 520628

Following that, you can create all required constraints, indexes, triggers, etc.
for new_meetings.

There is a dirty hack you can resort to if your table is huge and you are
performing this on a live system. It involves creating the foreign key
constraint but not validating it immediately. This would of course presuppose
that you trust the data that’s inside your tables — namely that the data in the
foreign key column is valid (which it probably will be, being an exact copy of
the original table). However, actions such as this are generally not
recommended, as they involve touching the PostgreSQL catalog.

Note

Modifying the PostgreSQL catalog is something that should be avoided

because, unless you know exactly what you’re doing, you can make a change
that causes data corruption or the database to become unusable.

Having stated the risk, here is what you can do:

ALTER TABLE new_meetings ADD

CONSTRAINT event_id_fk FOREIGN KEY (event_id)

REFERENCES events (id) NOT VALID;

UPDATE pg_constraint SET convalidated = true WHERE conname = 'event_id_fk';

If this is a live system, you should also probably create triggers to replicate
the changes that are coming into meetings to new_meetings too. Also,
triggers to replicate changes to events as meetings changes — it’s easy as
now we have the foreign key.

Finally, you perform all the DDL at once inside a single code block:

DO $$

BEGIN

 ALTER TABLE meetings RENAME TO old_meetings;

 ALTER TABLE new_meetings RENAME TO meetings;

 DROP TABLE old_meetings;

 COMMIT;

END $$ LANGUAGE plpgsql;

That’s it; you’re now free of table inheritance and can do things such as
experimenting with partitioning (which, fortuitously, is discussed in the very
next section in this book).

4.2 Neglecting table partitioning

We previously mentioned table partitioning, but what is it all about? In a
relational database context, it’s simply the division of a table into distinct
independent tables. Also known as horizontal partitioning, it makes it so that
rows that are different in some particular respect end up in different tables.
Having heard a decade of complaints by users of databases made by other
vendors that PostgreSQL didn’t support partitioning, I have always been
stunned to discover how few people are aware of partitioning in Postgres.
PostgreSQL 10 introduced declarative partitioning (the ability to do it via
CREATE TABLE) in 2017, and there had been less elegant ways of

implementing partitioning since at least PostgreSQL 8.1, released way back
in 2005! PostgreSQL has continued to improve partitioning features in later
versions, such as adding foreign key support in version 12, and enhancing
performance for partitioned tables.

Now we come to the question of when leaving your tables unpartitioned turns
out to be a mistake. Frogge Emporium has a large payments table, and let’s
assume it doesn’t make sense for them to index it because they are receiving
a very large volume of data and they don’t want to slow down insert
performance. This is what searching for a payment looks like:

SELECT count(*) FROM erp.payments;

 count

 150001000

(1 row)

SET jit=off; SET max_parallel_workers_per_gather=0;

SET

SET

EXPLAIN (ANALYZE, BUFFERS)

 SELECT * FROM erp.payments WHERE tstamp='2022-03-09 22:58:20.431946+00';

 QUERY PLAN

--

 Seq Scan on payments (cost=0.00..3026445.20 rows=1 width=31) (actual

 time=38723.267..62110.334 rows=1 loops=1)

 Filter: (tstamp = '2022-03-09 22:58:20.431946+00'::timestamp with time

 zone)

 Rows Removed by Filter: 150000999

 Buffers: shared hit=812 read=1151157

 Planning Time: 0.115 ms

 Execution Time: 62110.373 ms

(6 rows)

Wow! It takes a full minute to find a row in this table and what’s even worse
is that we appear to have read 1151157 buffers or 9 whole GB of data from
the disk. Similarly, if we want to delete the oldest month of data, which
happens to be September 2021:

\timing

Timing is on.

DELETE FROM erp.payments WHERE tstamp < '2021-10-01';

DELETE 1209894

Time: 65914.030 ms (01:05.914)

That’s quite bad, for an OLTP database that has performance requirements.
Partitioning the table can help with this workload because it can split it into
smaller tables that perform better in our use case and are easier to maintain.

PostgreSQL declarative partitioning is, simply put, specifying for your table:

A partitioning method
A partition key, which can be one or more columns or expressions
Partition boundaries

And it’s done simply with DDL. Let’s create an empty partitioned version of
the payments table, like this:

CREATE TABLE erp.payments_p (

 id bigint GENERATED ALWAYS AS IDENTITY,

 tstamp timestamp with time zone NOT NULL,

 amount numeric NOT NULL,

 invoice bigint NOT NULL

) PARTITION BY RANGE (tstamp);

CREATE TABLE

An additional reason to partition your tables is that PostgreSQL does have
some hard size limits when it comes to tables. Admittedly, they are hard to
reach but not impossible given the ever-increasing amounts of data people are
handling today.

Postgres supports an unlimited data size, which is great news. It also supports
having 1.4 billion tables per database, regardless of how bad an idea that
would be. However, a very real limitation is the maximum table size, which
for the default block size of 8192 bytes is 32 terabytes. The maximum
number of rows per table limitation is less clear: as many rows as can fit in
4.2 billion blocks.

Here’s where dimensioning comes in — it’s important to plan ahead so that
you don’t get stuck with an unmanageably large table a few months or years
down the line. You should get your calculator out and take into account your

system’s data ingestion rate, both in terms of number of rows getting created
but also in terms of data size in bytes. Something else to factor in are
projected increases, which may even be outside of the IT system, such as
Frogge Emporium having 25 retail locations which are projected to grow to
200 over the next four years. Finally, you need to take into account your data
retention requirements, such as e.g. the law mandating you keep 10 years'
worth of records around.

The capacity planning exercise you perform will inform your choice of
partitioning method and key. For instance let’s say you determine that from
each device from a sensor network of 1000, you receive 1440 measurements
per day. Then you can extrapolate this number to see how many
measurements you ingest per year. Obviously, you need to keep checking that
this estimate remains valid and be prepared to revise accordingly.

Frogge Emporium has determined that the most meaningful partition size for
them is one month. They can use tstamp as the partition key, and divide the
table by RANGE partitioning, which is suitable for ranges of time, identifiers,
etc. Therefore they write a script to create monthly partitions for the table we
just created:

DO $$

BEGIN

 FOR i IN 0..28

 LOOP

 EXECUTE format('CREATE TABLE erp.%s PARTITION OF erp.payments_p

 FOR VALUES FROM (''%s'') TO (''%s'')',

 'payments_p_' ||

 extract('year' FROM date_trunc('month', now()) -

 (i * INTERVAL '1 month')) || '_' ||

 extract('month' FROM date_trunc('month', now()) -

 (i * INTERVAL '1 month')),

 date_trunc('month', now()) - (i * INTERVAL '1 month'),

 date_trunc('month', now()) + ((1 - i) * INTERVAL '1 month'));

 END LOOP;

END;

$$;

DO

The script’s loop starts 28 months before the current month and creates each
month’s partition like so:

CREATE TABLE erp.payments_p_<year>_<month>

PARTITION OF erp.payments_p

FOR VALUES FROM (<first day of month>) TO (<last day of month>);

The resulting partition structure looks like this:

payments_p

├── payments_p_2021_1

├── payments_p_2021_2

├── payments_p_2021_3

├── ...

├── payments_p_2022_1

├── payments_p_2022_2

└── ...

We copy the data from the unpartitioned table into our new tables (this takes
a long time):

INSERT INTO erp.payments_p (tstamp, amount, invoice)

 SELECT tstamp, amount, invoice FROM erp.payments;

INSERT 0 150001000

Now let’s see how long it takes to find the same row in the partitioned table:

EXPLAIN (ANALYZE, BUFFERS)

 SELECT * FROM erp.payments_p

 WHERE tstamp='2022-03-09 22:58:20.431946+00';

 QUERY PLAN

--

 Seq Scan on payments_p_2022_3 payments_p (cost=0.00..111450.00 rows=1

 width=32) (actual time=1780.649..2535.625 rows=1 loops=1)

 Filter: (tstamp = '2022-03-09 22:58:20.431946+00'::timestamp with time

 zone)

 Rows Removed by Filter: 5349599

 Buffers: shared read=44580

 Planning:

 Buffers: shared hit=20 dirtied=2

 Planning Time: 0.406 ms

 Execution Time: 2535.658 ms

(8 rows)

At only 2.5 seconds, it’s 24.5 times faster than the unpartitioned table.
Because PostgreSQL does what is known as partition pruning — or not
searching in partitions that cannot possibly contain the row we’re looking for 

— it only needed to check partition payments_p_2022_3 and to read just
44580 buffers or 348 MB from the disk. Partition pruning is enabled by our
inclusion of the partition key as a predicate to our query, therefore letting the
internal query planner know which rows we are not looking for.

Let’s see how much faster it is to drop a month’s partition than to delete that
month’s data:

\timing

Timing is on.

DROP TABLE erp.payments_p_2021_9;

DROP TABLE

Time: 43.113 ms

This is simply stunning performance which makes data management and
maintenance a lot easier.

Note

You can find more details on selecting a partitioning method and key in the
official PostgreSQL documentation at:
https://www.postgresql.org/docs/current/ddl-partitioning.html

Partitioning can help with:

Performance, because you have sequential and index scans of smaller
amounts of data due to partition pruning.
Maintenance, because you can DROP TABLE to delete old data and
because VACUUM of multiple smaller tables can parallelize and complete
quicker than one very long running operation for one huge table.
Disk size limitations, because you can put partitions on different
tablespaces (which in PostgreSQL can live on different filesystems or
disks). This also means you can put different partitions on slower and
cheaper disks, and also that you can decide whether to create indexes on
some of them or not.
Circumventing a pitfall of extremely large tables: they are split into 1
GB files and PostgreSQL loops through some code that’s the same for
each 1 GB segment, so it would execute that 32000 times for a 32 TB

table.

However, you need to be aware that choosing the wrong partitioning method,
partition key or partition sizing may actually lead to performance
degradation. For example, you should favor keys with sufficient cardinality
to distribute the data evenly across your partitions. Additionally, if your
queries don’t include the partition key in the WHERE clause they will not
leverage partition pruning and this can lead to worse execution plans.

Using a poorly selected partitioning strategy and key may lead to having too
many partitions with just a few rows in each. If the partitioning key doesn’t
group the data effectively, you may incur higher overheads with excessive
partition scans, which will lead to increased I/O and, consequently, slower
queries.

To summarize, partitioning with due diligence can make your tables easier to
manage, help you get around PostgreSQL limitations when you’re dealing
with big data, and give you a significant performance boost for your queries.

4.3 Partitioning by multiple keys

In the PostgreSQL documentation’s CREATE TABLE partitioning section, you
can easily find the syntax for partitioning by multiple keys. Sometimes it
makes sense to partition a table by multiple columns, to have better
granularity or a larger number of partitions more finely tuned to the data.

Frogge wants to partition their energy usage table both by month and branch
so that the data in each table will be more specific. Let’s try partitioning by
multiple keys:

CREATE TABLE erp.energy_usage (

 branch_id integer NOT NULL,

 reading_time timestamptz DEFAULT CURRENT_TIMESTAMP,

 reading numeric NOT NULL,

 unit varchar DEFAULT 'kWh' NOT NULL

)

PARTITION BY RANGE (reading_time, branch_id);

CREATE TABLE

Now that the base table is created, let’s create a partition for January 2024
and branch IDs 1-10:

CREATE TABLE erp.energy_usage_2024_01_01to10

PARTITION OF erp.energy_usage

FOR VALUES FROM ('2024-01-01', 1) TO ('2024-02-01', 10);

CREATE TABLE

That went well. Now let’s create the next partition for the same month, for
data from branches 11-20:

CREATE TABLE erp.energy_usage_2024_01_11to20

PARTITION OF erp.energy_usage

FOR VALUES FROM ('2024-01-01', 11) TO ('2024-02-01', 20);

ERROR: partition "energy_usage_2024_01_11to20" would overlap partition

 "energy_usage_2024_01_01to10"

LINE 3: FOR VALUES FROM ('2024-01-01', 11) TO ('2024-02-01', 20);

We got an error! We can see that PostgreSQL states that effectively a
reading_time value such as '2024-02-01 10:00:00' can only exist inside
the first partition, regardless of branch_id!

Why is this? Taking a closer look at what we were trying to do reveals that
what we did was to define partition boundaries on two keys. This simply
restricts the values for each key that can go into each partition. Be careful!
This is not partitioning on multiple levels.

What we actually need for our use case (having one partition per month for a
specific set of branches) is called sub-partitioning. Sub-partitioning is, simply
put, partitioning the partitions. Since each partition is a separate table, it can
be a partitioned table itself.

Caution

Partitioning by multiple keys is not the same as multi-level partitioning.

Let’s see the right way to do this. We create the base table with
reading_time as the partition key:

CREATE TABLE erp.energy_usage (

 branch_id integer NOT NULL,

 reading_time timestamptz DEFAULT CURRENT_TIMESTAMP,

 reading numeric NOT NULL,

 unit varchar DEFAULT 'kWh' NOT NULL

)

PARTITION BY RANGE (reading_time);

CREATE TABLE

Then we create partitions for each month, and afterward, we partition those
monthly partitions by branch_id:

CREATE TABLE erp.energy_usage_2024_01

PARTITION OF erp.energy_usage

FOR VALUES FROM ('2024-01-01') TO ('2024-02-01')

PARTITION BY RANGE (branch_id);

CREATE TABLE

CREATE TABLE erp.energy_usage_2024_01_01to10

PARTITION OF erp.energy_usage_2024_01

FOR VALUES FROM (1) TO (10);

CREATE TABLE

CREATE TABLE erp.energy_usage_2024_01_11to20

PARTITION OF erp.energy_usage_2024_01

FOR VALUES FROM (11) TO (20);

CREATE TABLE

And so on. Our schema now looks lovely!

\dt erp*

 List of relations

 Schema | Name | Type | Owner

--------+-----------------------------+-------------------+--------

 erp | energy_usage | partitioned table | frogge

 erp | energy_usage_2024_01 | partitioned table | frogge

 erp | energy_usage_2024_01_01to10 | table | frogge

 erp | energy_usage_2024_01_11to20 | table | frogge

(4 rows)

And \d+ erp.energy_usage_2024_01 for January 2024’s partitioned table
reports this:

Partition of: erp.energy_usage FOR VALUES FROM ('2024-01-01 00:00:00+00') TO

 ('2024-02-01 00:00:00+00')

Partition constraint: ((reading_time IS NOT NULL) AND (reading_time >=

 '2024-01-01 00:00:00+00'::timestamp with time zone) AND (reading_time <

 '2024-02-01 00:00:00+00'::timestamp with time zone))

Partition key: RANGE (branch_id)

Partitions: erp.energy_usage_2024_01_01to10 FOR VALUES FROM (1) TO (10),

 erp.energy_usage_2024_01_11to20 FOR VALUES FROM (11) TO (20)

So, if we continue down this path, our partitioning will start looking like this:

energy_usage

├── energy_usage_2024_01

│ ├── energy_usage_2024_01_01to10

│ └── energy_usage_2024_01_11to20

├── energy_usage_2024_02

│ ├── energy_usage_2024_02_01to10

│ └── energy_usage_2024_02_11to20

├── energy_usage_2024_03

│ └── ...

└── ...

Partitioning by multiple columns certainly has its usefulness, like for example
keeping scientific data separate and allowing rapid access via partition
pruning (provided WHERE clauses for both columns are specified in the query).
What’s easy to miss in the documentation is this part:

"For example, given PARTITION BY RANGE (x,y), a partition bound FROM
(1, 2) TO (3, 4) allows x=1 with any y>=2, x=2 with any non-null y, and
x=3 with any y<4."

In most cases, sub-partitioning may be more practically useful to you than
this syntax, so it’s good to be aware.

4.4 Using the wrong index type

There is a wide variety of indexes offered by PostgreSQL, alongside the
incredibly powerful capability to be able to write your own index types. Each
built-in index type uses its own algorithm that is suitable for specific uses.
Namely, improving query performance for specific types of queries on
certain types of data.

The default index type is B-Tree, and again it’s surprising to find out how
many people think it’s the only index type in PostgreSQL. The B-Tree index

can speed up queries with equality or ordering comparisons, and can also
offer some querying capabilities with the LIKE operator for pattern matching
and ~ operator for regular expressions.

Let’s see what we can do with the default index type for a dataset such as
ArXiv’s Open Access research metadata, which has entries for 2.4 million
articles, complete with titles, authors, categories, abstracts, etc.

Note

You can create a Kaggle account to download the dataset at:
https://www.kaggle.com/datasets/Cornell-University/arxiv/

After unzipping the 4.2 GB JSON dataset, we run the following to escape
backslashes and make Postgres happier with our JSON file:

sed -i 's/\\/\\\\/g' 'arxiv-metadata-oai-snapshot.json'

We then copy it into our database table called arxiv, with everything inside a
jsonb column called data:

CREATE TABLE test.arxiv (data jsonb);

CREATE TABLE

\copy test.arxiv FROM 'arxiv-metadata-oai-snapshot.json'

COPY 2417693

We can access the elements of each entry, such as the title, like this:

SELECT data ->> 'title' FROM test.arxiv TABLESAMPLE BERNOULLI (0.1) LIMIT 1;

 ?column?

 Modeling of hydrogen and hydroxyl group migration on graphene

(1 row)

We can now create an index to speed up searching through those titles by
indexing only the title element from the entire JSON document. We’d rather
use case-insensitive search, so let’s turn everything into lower case, and
specify that we need the index for text_pattern_ops:

CREATE INDEX ON test.arxiv (lower(data->>'title') text_pattern_ops);

CREATE INDEX

ANALYZE test.arxiv;

ANALYZE

Now that the index is created, we can search for articles with titles beginning
for example with "Modeling of hydrogen". Remember to always use the
expression that was previously used in the index creation in the WHERE clause
for querying:

EXPLAIN ANALYZE

 SELECT data->'doi'

 FROM test.arxiv

 WHERE lower(data->>'title') LIKE 'modeling of hydrogen%';

 QUERY PLAN

--

 Index Scan using arxiv_lower_idx on arxiv (cost=0.56..9.19 rows=242

 width=32) (actual time=0.085..0.085 rows=1 loops=1)

 Index Cond: ((lower((data ->> 'title'::text)) ~>=~

 'modeling of hydrogen'::text) AND (lower((data ->> 'title'::text)) ~<~

 'modeling of hydrogeo'::text))

 Filter: (lower((data ->> 'title'::text)) ~~ 'modeling of

 hydrogen%'::text)

 Planning Time: 0.755 ms

 Execution Time: 0.134 ms

(5 rows)

That wasn’t too bad; let’s try filtering by titles containing "modeling of
hydrogen" (notice the query pattern change to '%modeling of hydrogen%'):

SET jit=off; SET max_parallel_workers_per_gather=0;

SET

SET

EXPLAIN ANALYZE

 SELECT data->'doi'

 FROM test.arxiv

 WHERE lower(data->>'title') LIKE '%modeling of hydrogen%';

 QUERY PLAN

--

 Seq Scan on arxiv (cost=0.00..488032.26 rows=242 width=32) (actual

 time=539.217..8624.051 rows=5 loops=1)

 Filter: (lower((data ->> 'title'::text)) ~~ '%modeling of

 hydrogen%'::text)

 Rows Removed by Filter: 2417688

 Planning Time: 0.084 ms

 Execution Time: 8624.065 ms

(5 rows)

That was much, much worse. The index wasn’t used at all, because B-Tree
indexes are only good for equality and sorting searches, even with the
text_pattern_ops specifier (did you notice that PostgreSQL was looking for
index keys in between 'modeling of hydrogen%' and 'modeling of
hydrogeo%' in the previous query’s plan?).

So the default index type is no good for searching for substrings that are not
at the beginning (or end) of the value, and that makes it pretty much
unsuitable for full-text search. But even if it magically was capable of that,
we’d run into this issue if we tried, for example, to index the abstract instead
of the title:

CREATE INDEX ON test.arxiv (lower(data->>'abstract') text_pattern_ops);

ERROR: index row size 2728 exceeds btree version 4 maximum 2704 for index

 "arxiv_lower_idx1"

DETAIL: Index row references tuple (213838,4) in relation "arxiv".

HINT: Values larger than 1/3 of a buffer page cannot be indexed.

Consider a function index of an MD5 hash of the value, or use full text

 indexing.

You can’t really index values that long. This makes B-Tree unsuitable for
indexing documents, in most cases. But it’s actually quite cool of Postgres to
tell us what we’re probably doing wrong here!

Let’s also notice the size of the B-Tree index:

\di+ test.arxiv*

List of relations

-[RECORD 1]-+----------------

Schema | test

Name | arxiv_lower_idx

Type | index

Owner | frogge

Table | arxiv

Persistence | permanent

Access method | btree

Size | 239 MB

Description |

The proper index to use here is PostgreSQL’s Generalized Inverted Index
(GIN) which works very well for full-text search with the tsvector data
type. Creating the index on titles looks like this:

DROP INDEX test.arxiv_lower_idx;

DROP INDEX

CREATE INDEX ON test.arxiv

 USING gin (to_tsvector('english', data->>'title'));

CREATE INDEX

And querying reveals how much better the GIN index is for this sort of thing:

EXPLAIN ANALYZE

 SELECT data->'doi'

 FROM test.arxiv

 WHERE to_tsvector('english', data->>'title')

 @@ plainto_tsquery('english', 'modeling of hydrogen');

 QUERY PLAN

--

 Bitmap Heap Scan on arxiv (cost=38.89..292.85 rows=60 width=32) (actual

 time=1.829..4.949 rows=236 loops=1)

 Recheck Cond: (to_tsvector('english'::regconfig, (data ->>

 'title'::text)) @@ '''model'' & ''hydrogen'''::tsquery)

 Heap Blocks: exact=236

 -> Bitmap Index Scan on arxiv_to_tsvector_idx (cost=0.00..38.87

 rows=60 width=0) (actual time=1.783..1.783 rows=236 loops=1)

 Index Cond: (to_tsvector('english'::regconfig, (data ->>

 'title'::text)) @@ '''model'' & ''hydrogen'''::tsquery)

 Planning Time: 3.455 ms

 Execution Time: 4.989 ms

(7 rows)

That’s awesome performance for millions of documents. We should expect
performance to be comparable for the abstracts, or we could concatenate both
elements and index them together.

What’s even better is the index size, which is smaller than B-Tree:

\di+ test.arxiv*

List of relations

-[RECORD 1]-+----------------------

Schema | test

Name | arxiv_to_tsvector_idx

Type | index

Owner | frogge

Table | arxiv

Persistence | permanent

Access method | gin

Size | 100 MB

Description |

However, GIN can be used improperly too. Separately from full-text search,
you can use GIN to index entire JSON documents to speed up access to the
elements contained within. It’s easy to assume that this one big index covers
every use case:

DROP INDEX test.arxiv_to_tsvector_idx ;

DROP INDEX

CREATE INDEX ON test.arxiv USING gin (data);

CREATE INDEX

\di+ test.arxiv*

List of relations

-[RECORD 1]-+---------------

Schema | test

Name | arxiv_data_idx

Type | index

Owner | frogge

Table | arxiv

Persistence | permanent

Access method | gin

Size | 1680 MB

Description |

Let’s use the index to search for specific article Digital Object Identifiers
(DOIs):

EXPLAIN ANALYZE

 SELECT *

 FROM test.arxiv

 WHERE data @> '{"doi": "10.1039/c0cp01009j"}';

 QUERY PLAN

--

 Bitmap Heap Scan on arxiv (cost=56.90..1011.01 rows=242 width=1345)

 (actual time=0.127..0.127 rows=1 loops=1)

 Recheck Cond: (data @> '{"doi": "10.1039/c0cp01009j"}'::jsonb)

 Heap Blocks: exact=1

 -> Bitmap Index Scan on arxiv_data_idx (cost=0.00..56.84 rows=242

 width=0) (actual time=0.116..0.116 rows=1 loops=1)

 Index Cond: (data @> '{"doi": "10.1039/c0cp01009j"}'::jsonb)

 Planning Time: 2.345 ms

 Execution Time: 0.159 ms

(7 rows)

That’s awesome performance. But if we’re only ever looking for DOIs is it
really the right choice? Let’s compare:

DROP INDEX test.arxiv_data_idx ;

DROP INDEX

CREATE INDEX ON test.arxiv((data->>'doi'));

CREATE INDEX

\di+ test.arxiv*

List of relations

-[RECORD 1]-+---------------

Schema | test

Name | arxiv_expr_idx

Type | index

Owner | frogge

Table | arxiv

Persistence | permanent

Access method | btree

Size | 61 MB

Description |

That’s tiny! Let’s find our DOI:

EXPLAIN ANALYZE

 SELECT * FROM test.arxiv

 WHERE data->>'doi' = '10.1039/c0cp01009j';

 QUERY PLAN

--

 Bitmap Heap Scan on arxiv (cost=254.11..42289.79 rows=12088 width=1345)

 (actual time=0.043..0.044 rows=1 loops=1)

 Recheck Cond: ((data ->> 'doi'::text) = '10.1039/c0cp01009j'::text)

 Heap Blocks: exact=1

 -> Bitmap Index Scan on arxiv_expr_idx (cost=0.00..251.09 rows=12088

 width=0) (actual time=0.034..0.034 rows=1 loops=1)

 Index Cond: ((data ->> 'doi'::text) = '10.1039/c0cp01009j'::text)

 Planning Time: 0.554 ms

 Execution Time: 0.076 ms

(7 rows)

Look at that speed, B-Tree is awesome when it comes to comparing
identifiers. Remember this, and use the right index for the right queries
depending on each index type’s strengths.

You can also look up in the PostgreSQL documentation when using a lossy
index, such as a Generalized Search Tree (GiST), would be beneficial in
place of GIN — for instance, when you have a huge dataset but query times
aren’t critical. GiST indexes come in handy for Postgres range types, such as
daterange. Along the same lines, you can use a lossy Block Range Index
(BRIN), which is orders of magnitudes smaller than a B-Tree, for searching
in ranges of values such as timestamps, if it is sufficient for what you are
planning to query. As updating indexes is slow, especially complicated index
types such as GIN, remember to only index what you need, and for whatever
level of performance you deem to be acceptable.

More information on these index types and their usage can be found here:

https://www.postgresql.org/docs/current/textsearch-indexes.html
https://www.postgresql.org/docs/current/brin.html

4.5 Summary

If you discovered table inheritance and you think you need it, you’re
probably wrong. Implement the parent-child relationships with foreign
keys and triggers if needed.
You can leverage table partitioning to make management and
maintenance of large tables easier, and speed up the queries hitting those
tables.
Take care when sub-partitioning because partitioning by multiple keys is
not the same thing. Unfortunately, it is not obvious from the
documentation what the multiple key partitioning syntax does, when
best to use it, and what its implications are.
Each index type offered in PostgreSQL has its strengths and
weaknesses. By adapting your indexing plan to the type of data you have
and type of queries you need to run, you can optimize performance and
storage space. When you get it right, your queries can run orders of
magnitude faster.

5 Improper feature usage
In this chapter

What choosing the SQL_ASCII encoding entails
Creating rules, and the associated pitfalls
Misusing NoSQL features for SQL queries
Improvising distributed/multi-master systems can lead to problems

The rich feature set of PostgreSQL is what makes it such a powerful tool for
data processing. Far from being a traditional Relational Database
Management System (RDBMS), additional features such as NoSQL
capabilities, logical replication, foreign data wrappers and rules give you the
flexibility to design a wide variety of database-oriented systems (and to make
mistakes with those designs)!

5.1 Selecting SQL_ASCII as the encoding

Since the dawn of computing, character encoding, or the numeric
representation of text characters, has used various encoding schemes for
mapping characters to numeric values for storage. With the use of computers
expanding around the globe, the need to create more (and almost always
incompatible) code pages or character sets for use with different languages'
written characters became a hot topic.

Encoding / code page / character set

A character set is simply a grouping of characters and symbols, such as the
ones necessary to properly represent a language and locale combination. It is
also known as a code page in some legacy environments. The term encoding
refers to how this character set is represented internally as one or more bytes
per character. So for instance we have the very large Unicode character set,
also known as the Universal Coded Character Set (UCS), which can be
represented in a binary form by the UTF-8 encoding.

PostgreSQL supports lots of character sets or text encodings, mostly for
reasons of compatibility with legacy data already using those encodings.
These are also known as server-side encodings, and you can have a global
default selected for the entire PostgreSQL server which is set at initialization
time and, at the same time, individual databases each having their own
encoding. Depending on the encoding, one or multiple bytes per character
can be used.

If the locale is not set, as can sometimes be the case on badly configured
cloud compute instances, Postgres will default to SQL_ASCII. Your databases
will then look something like this:

\l

List of databases

-[RECORD 1]-----+----------------------

Name | frogge

Owner | frogge

Encoding | SQL_ASCII

Locale Provider | libc

Collate | C

Ctype | C

ICU Locale |

ICU Rules |

Access privileges |

-[RECORD 2]-----+----------------------

Name | postgres

Owner | postgres

Encoding | SQL_ASCII

Locale Provider | libc

Collate | C

Ctype | C

ICU Locale |

ICU Rules |

Access privileges |

...

Our friends at Frogge Emporium want to store ticket content text in the
tickets table but their customer base can use multiple languages. So, they
decide to stay with database encoding SQL_ASCII, which seems to accept
characters from any character set that the customer may use without
complaining.

In the PostgreSQL documentation, we can see under "24.3.1. PostgreSQL

Character Sets" the following:

Table 5.1 PostgreSQL Character Sets

Name Description Language Server? ICU? Bytes/
Char Aliases

SQL_ASCII
unspecified
(see text) any Yes No 1

And under "24.3.4. Available Character Set Conversions" we find:

Table 5.2 Available Character Set Conversions

Server Character Set Available Client Character Sets

SQL_ASCII
any (no conversion will be
performed)

Let’s see what happens when we accept writes from any client encoding into
our SQL_ASCII database. In the following snippet, we’ll generate text input in
3 different encodings application-side, and then insert it straight into our
database.

Listing 5.1 sql_ascii_in.py: Insert multi-language text into SQL_ASCII database

import psycopg

english_text = ("Good evening, I would like to return my last order "

 + "please.").encode('iso-8859-1')

greek_text = ("Καλησπέρα, θα ήθελα να επιστρέψω την τελευταία μου παραγγελία "

 + "παρακαλώ.").encode('windows-1253')

japanese_text = ("こんばんは、前回の注文を返品したいのですがお願いします。"
).encode('shift_jis')

with psycopg.connect("dbname=frogge user=frogge") as conn:

 with conn.cursor() as cur:

 cur.execute('''INSERT INTO support.tickets (content, status)

 VALUES (%s, 20), (%s, 20), (%s, 20)''',

 (english_text, greek_text, japanese_text))

Okay, that seemed to work. Let’s see what we put inside our database now:

SELECT id, content FROM support.tickets;

 id | content

----+---

 1 | \x476f6f64206576656e696e672c204920776f756c64206c696b6520746f207265747.

 |.5726e206d79206c617374206f7264657220706c656173652e

 2 | \xcae1ebe7f3f0ddf1e12c20e8e120dee8e5ebe120ede120e5f0e9f3f4f1ddf8f920f.

 |.4e7ed20f4e5ebe5f5f4e1dfe120eceff520f0e1f1e1e3e3e5ebdfe120f0e1f1e1eae1.

 |.ebfe2e

 3 | \x82b182f182ce82f182cd8141914f89f182cc928d95b682f095d4956982b582bd82a.

 |.282cc82c582b782aa82a88ae882a282b582dc82b78142

(3 rows)

Wait, this is slightly confusing. What are all these crazy hexadecimal values?
Ah! We did mention that text encoding is all about the numeric
representation of textual characters, so it makes sense. These must be our
strings' numeric representations in the encodings that we specified.

Let’s read them from the application now! As these are now sequences of
bytes representing text, let’s retrieve them as such and cast to bytea, and then
print them as UTF-8 text.

Listing 5.2 sql_ascii_out.py: Read multi-language text from SQL_ASCII database

import psycopg

with psycopg.connect("dbname=frogge user=frogge") as conn:

 with conn.cursor(row_factory=psycopg.rows.dict_row) as cur:

 cur.execute('''SELECT id, content::bytea FROM support.tickets''')

 res = cur.fetchall()

 for row in res:

 print(row['id'], row['content'].decode('UTF-8'))

Running the above produces:

1 Good evening, I would like to return my last order please.

Traceback (most recent call last):

 File "/home/myuser/sql_ascii_out.py", line 8, in <module>

 print(row['id'], row['content'].decode('UTF-8'))

 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xca in position 0:

 invalid continuation byte

Whoops! What happened here? We can see that the first row decoded to
UTF-8 fine, but the next one failed. Well, actually, they would all have failed,
if it wasn’t for the happy accident that the first 128 characters in UTF-8 are
the same as those in ASCII. Let’s rewind and understand what happened
here:

When we choose the SQL_ASCII "encoding" in PostgreSQL, the database
interprets byte values 0–127 as ASCII, and simply ignores byte values 128–
255, not interpreting them as anything. These are the values that were
inventively used by the erstwhile creators of the early computer character sets
that we mentioned previously (for single-byte sets — multi-byte code pages,
e.g. for Asian alphabets, are a whole other mess). The fact that these bytes are
uninterpreted characters means that no conversion to other encodings will be
performed, as stated in the official documentation (remember what’s in
parentheses in Table 5.2?).

This means that in Postgres SQL_ASCII is not so much an encoding, but rather
a lack thereof, and it behaves significantly differently from all other
supported encodings. Input data is not validated, and encoding conversion is
not possible. Using the SQL_ASCII setting with non-ASCII data from other
languages means that it allowed us to "mix and match" encoded data with no
way to decode it, and has now left us with the conundrum of needing to
figure out which encoding each value is in, which is practically impossible
unless you manually examine the table data row by row.

Tip

In case it’s not clear yet, just use UTF-8 for everything.

The UTF-8 encoding of the Unicode standard has practically eclipsed
everything else in the modern world, and with good reason — in most cases,
it has allowed us to finally stop worrying about text encodings for
multilingual data. There are still many legacy applications out there using
traditional code pages, but for anything new, there is really no reason to use

anything besides UTF-8. And for the application side, you need to make sure
your application input is UTF-8 or at the very least, for legacy applications,
that UTF-8 data is sent to the database.

It is unfortunate that, in the absence of a locale configuration, PostgreSQL
defaults to using SQL_ASCII, and if you happen to be using the Latin alphabet
for your text, that will appear to work mostly fine — until you try to do any
conversions. However, if your system’s locale settings are configured
properly, PostgreSQL will use UTF8 for your locale.

So what happens if you do have a legacy database and you’re stuck with
SQL_ASCII? If you know the most likely encoding for your data, you can
probably migrate it to UTF8. Extracting the data and converting it to UTF-8 is
not so hard:

SELECT id,

 convert_from(convert(content::bytea, 'ISO-8859-1', 'UTF8'), 'UTF8')

FROM support.tickets

WHERE id = 1;

 id | convert_from

----+--

 1 | Good evening, I would like to return my last order please.

This is good, it means you can now obtain UTF-8 strings for your text which
you can export. The encoding of a database cannot be changed, so you will
need to create a new one for the migration. Even in a misconfigured system,
you can still create a UTF8 database:

CREATE DATABASE frogge_new ENCODING UTF8 LC_COLLATE 'en_US.UTF-8'

LC_CTYPE 'en_US.UTF-8' TEMPLATE template0;

CREATE DATABASE

\x\l frogge*

Expanded display is on.

List of databases

-[RECORD 1]-----+------------

Name | frogge

Owner | frogge

Encoding | SQL_ASCII

Locale Provider | libc

Collate | C

Ctype | C

ICU Locale |

ICU Rules |

Access privileges |

-[RECORD 2]-----+------------

Name | frogge_new

Owner | frogge

Encoding | UTF8

Locale Provider | libc

Collate | en_US.UTF-8

Ctype | en_US.UTF-8

ICU Locale |

ICU Rules |

Access privileges |

When we create our schema in the new database, Unicode strings work as
expected:

INSERT INTO support.tickets (content, status) VALUES

('Good evening, I would like to return my last order please.', 20),

('Καλησπέρα, θα ήθελα να επιστρέψω την τελευταία μου παραγγελία παρακαλώ.',20),

('こんばんは、前回の注文を返品したいのですがお願いします。', 20);
INSERT 0 3

SELECT id, content FROM support.tickets;

 id | content

----+---

 1 | Good evening, I would like to return my last order please.

 2 | Καλησπέρα, θα ήθελα να επιστρέψω την τελευταία μου παραγγελία παρακαλ.

 |.ώ.

 3 | こんばんは、前回の注文を返品したいのですがお願いします。
(3 rows)

Client encoding

So we mentioned that these are server-side encodings. PostgreSQL also lets
you select a client encoding (e.g. with SET client_encoding), and it
performs any character set conversion between server and client
automatically for you (if the combination of encodings is supported — see
documentation at
https://www.postgresql.org/docs/current/multibyte.html#MULTIBYTE-
CONVERSIONS-SUPPORTED). By implication, this allows you to use
Postgres with legacy applications that use specific encodings or don’t speak
Unicode.

However, you need to make sure that you write to the server using the proper
encoding — for example, our script in Listing 5.1 will not work with a UTF-8

database without first encoding the strings to be inserted in UTF-8.

To recap, SQL_ASCII is not a database encoding, and it behaves differently
from other PostgreSQL character sets. It doesn’t do encoding conversion or
validation, and you can end up storing a mixture of encodings with no way to
recover the original strings. Unless you are interfacing with a legacy system,
and you know exactly which character set that system uses, your safest bet is
to always use UTF8. Make sure you are always aware of the selected character
encoding when creating a database. If you’re migrating your database,
convert your strings to UTF8. Finally, pay close attention to your collations
which can affect character classification and sort order.

Note

You can find a lot of information on collation support in PostgreSQL here:
https://www.postgresql.org/docs/current/collation.html

5.2 CREATE RULE

PostgreSQL offers a powerful rule system that allows you to rewrite and
modify the execution of queries. This is a Postgres extension of the SQL
Standard for defining actions such as "when we UPDATE table a, also INSERT
into table b" or "when we SELECT from table x, instead SELECT from table
y".

Note

The rules system is exclusive to PostgreSQL. It is not related to CREATE RULE
in other databases.

Frogge Emporium has a problem with people manually inserting orders
instead of using the sales administration user interface because no stock
check is made. They have decided to address this by putting in place a rule
that logs manual insertions and records who did it, which row was affected,
and when:

CREATE OR REPLACE RULE log_order_insertions AS

 ON INSERT TO erp.order_groups

 DO ALSO

 INSERT INTO audit.audit_log (what, who, id, tstamp)

 VALUES ('Manual order insertion',

 CURRENT_ROLE::text, NEW.id, clock_timestamp());

Let’s test the rule by inserting a row into order_groups, and selecting that
row immediately.

\x

Expanded display is on.

INSERT INTO erp.order_groups (status, placed_at, updated_at, customer)

 VALUES ('Placed', clock_timestamp(), clock_timestamp(), 135);

SELECT * FROM erp.order_groups ORDER BY placed_at DESC FETCH FIRST ROW ONLY;

INSERT 0 1

-[RECORD 1]-----------------------------

id | 500001

status | Placed

placed_at | 2024-06-04 21:21:57.542003+01

updated_at | 2024-06-04 21:21:57.542003+01

customer | 135

We see that we’ve inserted the row with id 500001. Let’s see what we logged
in the audit_log table:

TABLE audit.audit_log;

-[RECORD 1]-------------------------

what | Manual order insertion

who | frogge

id | 500002

tstamp | 2024-06-04 21:21:57.52818+01

What?! We’ve logged that id 500002 was inserted and that is incorrect, as we
know we inserted the row with id 500001.

What happened here is that, under the covers, when we ran the INSERT query
which automatically selected nextval() from the sequence
order_groups_id_seq giving values to id, the rule rewrote it and it
effectively became two queries:

INSERT INTO erp.order_groups (id, status, placed_at, updated_at, customer)

 VALUES (nextval('erp.order_groups_id_seq'), 'Placed', clock_timestamp(),

 clock_timestamp(), 135);

INSERT INTO audit.audit_log (what, who, id, tstamp)

 VALUES ('Manual order insertion',

 CURRENT_ROLE::text, nextval('erp.order_groups_id_seq'),

 clock_timestamp());

So we can see that the rule did not work the way we expected because it
changed our SQL with an unintended side effect — incrementing the
order_groups_id_seq sequence. A hint pointing this out would have been
the different timestamp we saw in audit_log's tstamp. We can learn two
things from this: how side effects like this could have been destructive if, for
instance, subsequent queries in the rule used DELETE, and also that using
VOLATILE functions with rules can be tricky because they may be executed
multiple times. What we should have done here is use a TRIGGER, because
trigger behavior is well-understood and predictable.

Note

PostgreSQL functions are labeled with the volatility classifications VOLATILE,
STABLE, or IMMUTABLE. VOLATILE functions can do anything, including
modifying the database, whereas STABLE and IMMUTABLE functions can’t
modify the database. At the same time, STABLE functions must return the
same results for the same arguments for all rows within a single statement.
IMMUTABLE ones must always return the same results for the same arguments.
Declaring the correct volatility category is crucial for improving performance
via the Postgres optimizer.

Let’s see another troubling aspect of RULE usage. We assume Frogge wants to
prevent orders that are more than one year old from ever being updated again.
The following rule is written:

CREATE OR REPLACE RULE dont_update_old_orders AS

 ON UPDATE TO erp.order_groups

 WHERE old.updated_at < now() - INTERVAL '1 year'

 DO INSTEAD NOTHING;

Let’s find one that’s older than a year:

SELECT *

FROM erp.order_groups

TABLESAMPLE BERNOULLI (10)

WHERE updated_at < now() - INTERVAL '1 year';

-[RECORD 1]-----------------------------

id | 651

status | Fulfilled

placed_at | 2023-01-23 15:36:48.270475+00

updated_at | 2023-01-23 15:36:48.270475+00

customer | 88

All right, let’s carefully check if the rule will prevent us from running the
following:

BEGIN;

BEGIN

UPDATE erp.order_groups SET status = 'Cancelled'

WHERE updated_at < '2024-01-01';

UPDATE 24067

Oops! Not really what we expected. Let’s undo:

ROLLBACK;

ROLLBACK

It’s very important to understand that RULEs don’t prevent the query from
running. We saw that the query did execute fine, and affected all rows older
than '2024-01-01' but not older than a year. It did execute the query but
with the added condition WHERE updated_at < now() - INTERVAL '1
year' coming from the rule:

 QUERY PLAN

--

 Update on order_groups (cost=0.00..1.05 rows=0 width=0)

 -> Seq Scan on order_groups (cost=0.00..1.05 rows=1 width=10)

 Filter: ((updated_at < '2024-01-01 00:00:00+00'::timestamp with

 time zone) AND ((updated_at < (now() - '1 year'::interval)) IS NOT

 TRUE))

Therefore it updated the 24067 rows in the table that were updated before
2024 began, but not updated during the past year.

There are other rule pitfalls as well, for example, nothing prevents you from
creating circular rules:

Rule 1: on insert to x, instead insert into y
Rule 2: on insert to y, instead insert into x

Admittedly, RULEs are necessary in one case: making VIEWs writable. You can
create rules that define ON INSERT, ON UPDATE or ON DELETE actions for views
that in actuality get performed on the constituent tables behind the view.

By far the biggest problem with the rule system is that it’s complicated to
understand, and therefore ripe for making mistakes. Rules don’t apply
conditional logic, but they are just an SQL rewriter for modifying queries and
adding additional actions.

The bottom line is: Don’t use rules! In most cases, they won’t do what you
expect them to and what you should be using instead are triggers. Rules
should be regarded as internal implementation components of the Postgres
VIEW system, and best left untouched by users.

5.3 Relational JSON

The addition of the json and jsonb document store types to PostgreSQL
unlocked a whole range of NoSQL capabilities, with the ability to combine
relational and schemaless data.

Nowadays, with Javascript-based languages being ubiquitous, it’s only
natural for developers to gravitate towards using JSON, as it’s the native data
format they’re intimately familiar with. However, PostgreSQL’s strength of
being able to combine SQL and NoSQL can turn into a detriment if these are
mixed in improper ways.

A famous relational database anti-pattern is known as Entity-Attribute-Value
or EAV. Also known as "open schema", it allows efficient storage of datasets
with sparse attributes (i.e. not every entity or object having the same
attributes, even if they are of the same object type) or sparse values (lots of
nulls). It’s easy to see the parallels with NoSQL here. However, in the
RDBMS world, EAV is considered an anti-pattern because it requires you to
write more difficult queries to retrieve the data, and often the complexity of
those queries makes it easy to get them wrong or write them in a way that
performs badly.

The usefulness of JSON storage for similar purposes, such as the ingestion of

large amounts of data where we cannot foresee the attributes or whether
they’re populated, is undeniable. Nevertheless, it’s easy for people to get
carried away and start using JSON even for data that fits the relational pattern
quite well. A good indicator of that is when you start considering the use of
SQL JOINs for retrieval of your JSON stored data — NoSQL / "schemaless"
was meant to eliminate the need for joins!

I like to call this anti-pattern Relational JSON. Let’s see some examples — 
our user has created the following tables to store customer accounts and sales
data, where everything in the row is inside a JSON field to allow maximum
flexibility:

CREATE TABLE test.accounts (

 json_account jsonb NOT NULL

);

CREATE TABLE test.sales (

 json_sale jsonb NOT NULL

);

The data held on customers that goes into accounts.json_account looks like
this:

{

 "id": 52101,

 "name": "Freddie",

 "balance": 1500.37,

 "migrated_account": {

 "system": "legacy",

 "migrated_on": "2023-12-20"

 }

}

{

 "id": 8101,

 "name": "Emory Trenneman",

 "opened_on": "March 12, 2019",

 "balance": 2530.00

}

And the records of sales in sales.json_sale look something like this:

{

 "id": 133045,

 "account_id": 565,

 "timestamp": "2024-01-30 12:54:10",

 "point_of_sale": 311,

 "amount": 35.99

}

{

 "id": 133046,

 "amount": 2138,

 "account_id": 8101,

 "timestamp": "2024-01-30 12:55:46+0 UTC",

 "point_of_sale": 2

}

Some things may be already apparent if you have experience with databases,
such as the fact that the database can’t enforce referential integrity or even
ensure that values are of the correct type or within allowable ranges. All this
will now need to be handled by the application.

Our user wants to find out the names of customers, not migrated from the
legacy system, who have placed an order exceeding 10000 and who have an
account balance less than 20000. Therefore a query is formulated:

SELECT a.json_account ->> 'name' AS "Name"

FROM test.accounts a

JOIN test.sales s

 ON (s.json_sale ->> 'account_id')::int = (a.json_account ->> 'id')::int

WHERE (a.json_account ->> 'balance')::numeric < 20000

AND (s.json_sale ->> 'amount')::numeric > 10000

AND (NOT a.json_account['migrated_account'] ->> 'system' = 'legacy'

 OR a.json_account -> 'migrated_account' IS NULL);

That is one ugly, barely legible query. Does it run? Yes, it runs. But
remember, in the previous section Improper Index Usage, we saw how
choosing the wrong index type may be functional, but at the same time
constitute a waste of disk space or relative loss of performance. For this use
case, we will practically have to index the entire contents of the tables with
large GIN or GIST indexes. Even then, the index wouldn’t help with this
query because it would turn into a Merge Join with Materialize and Sorts
of Seq Scans.

So even if you go and create a GIN index and use the proper jsonb operators

to take advantage of it — as follows — you can speed up the query somewhat
but it will still be a nested loop instead of a proper relational join using the
index:

SELECT a.json_account ->> 'name' AS "Name"

FROM test.accounts a

JOIN test.sales s

 ON (s.json_sale -> 'account_id') @> (a.json_account -> 'id')

WHERE (a.json_account -> 'balance')::numeric < 20000

AND (s.json_sale ->> 'amount')::numeric > 10000

AND (NOT a.json_account ->

 'migrated_account' @> '{"system": "legacy"}'::jsonb OR NOT

 a.json_account ? 'migrated_account');

So really your alternative would be to create expression-based indexes on
JSON keys that each row may or may not have. If you’re going to go to that
trouble anyway, why not store everything in relational form and avoid the
hassle of writing complex, hard-to-read queries? Use json(b) for what it’s
good at, such as replacing EAV, or as a second storage format for retrieving
the whole object, and don’t shoehorn relational-type data and queries into it.

5.4 Putting UUIDs everywhere

An interesting, and often abused, data type in PostgreSQL is UUID
(elsewhere known as GUID), which gives you a sequence of 32 hex digits for
use as a 128-bit identifier. The variety of UUID that is supported natively in
PostgreSQL is UUIDv4 and it gives you values such as 9b287b2a-276d-
4ba0-bcc7-b917246169a0.

Without giving it much thought, the uuid data type looks like it’s the ideal
type to use for worry-free identifiers. It gives you an infinitesimally small
probability of having duplicates, and a huge range of values is available for
use. It is also opaque and harder to guess than a sequence of integers, being
non-serially generated, so it’s popular for security-via-obscurity uses.

For reference, let’s examine some PostgreSQL data type sizes:

Table 5.3 PostgreSQL data type sizes

Data type Size in bytes

boolean 1

int 4

bigint 8

timestamptz 8

double precision 8

uuid 16

text 1 + string bytes (+4 if > 127 bytes)

Let’s create a table with uuid identifiers and then index them as the primary
key:

\timing

Timing is on.

CREATE TABLE test.tab (id uuid, content text);

CREATE

Time: 11.737 ms

INSERT INTO test.tab

 SELECT gen_random_uuid(), 'test' FROM generate_series(1,100000000);

INSERT 0 100000000

Time: 387838.234 ms (06:27.838)

ALTER TABLE test.tab ADD PRIMARY KEY (id);

ALTER TABLE

Time: 75875.825 ms (01:15.876)

That took as long as it took, now to find out our key and index size:

\x

Expanded display is on.

SELECT pg_column_size(id) FROM test.tab LIMIT 1;

-[RECORD 1]--+---

pg_column_size | 16

Time: 2.492 ms

\di+ test.tab_pkey

List of relations

-[RECORD 1]-+----------

Schema | test

Name | tab_pkey

Type | index

Owner | frogge

Table | tab

Persistence | permanent

Access method | btree

Size | 3008 MB

Description |

All right, now that we have a baseline established, let’s drop the table and try
again with bigint serial identifiers.

CREATE TABLE test.tab (id bigint, content text);

CREATE TABLE

Time: 5.902 ms

INSERT INTO test.tab SELECT generate_series(1,100000000), 'test';

INSERT 0 100000000

Time: 83137.075 ms (01:23.137)

ALTER TABLE test.tab ADD PRIMARY KEY (id);

ALTER TABLE

Time: 38123.742 ms (00:38.124)

That was noticeably faster. Let’s check key and index sizes:

SELECT pg_column_size(id) FROM test.tab LIMIT 1;

-[RECORD 1]--+--

pg_column_size | 8

Time: 1.195 ms

\di+ test.tab_pkey

List of relations

-[RECORD 1]-+----------

Schema | test

Name | tab_pkey

Type | index

Owner | frogge

Table | tab

Persistence | permanent

Access method | btree

Size | 2142 MB

Description |

Let’s put this up on a table for an easy comparison.

Table 5.4 Differences between UUIDs and serial big integers

bigint uuid Difference

INSERT 01:23 06:28 367% slower

CREATE INDEX 00:38 01:16 100% slower

Index size 2142 MB 3008 MB 40% bigger

These results were to be expected, of course, as UUIDv4 is at the same time
larger than a big integer and it requires generating the next value randomly
(something computers are not very good at). Using lots of UUIDs in your
table can also push your other data columns to spill over into the TOAST
table and make everything somewhat less efficient. If the system you’re
building requires serious performance optimization, these are certainly some
things to consider.

Lingo: TOAST

The Oversized-Attribute Storage Technique (TOAST) is PostgreSQL’s
solution for storing large values inside columns when the page size is just 8
kB and individual rows cannot spill over into the next pages. It supports in-
line compression of the values, but also storing them out-of-line (in a
different, associated table). You can read a much more detailed description of
TOAST at: https://www.postgresql.org/docs/current/storage-toast.html

Most of the time, you don’t even need such a big identifier range, as the
number of rows you will store will be many orders of magnitude smaller than
the available space of UUIDs. Even a PostgreSQL big integer, with 18
quintillion (and change) available values, might offer too big a range for what
you’re trying to do.

Don’t immediately reach out to UUID as a good identifier choice, there are
compromises to be made that may be significant for your application.

What is a good case for UUIDs? Possibly as a conflict-free and fast way to
generate identifiers for INSERTs from multiple nodes of a distributed system
(because there needs to be no coordination regarding the identifiers among
the nodes). But there are still disadvantages to this approach, such as that
sorting keys such as sequence numbers, timestamps and node identifiers are
not encoded in the UUID. What would probably be better solutions for this
usage are Snowflake ID or UUIDv7 (at the time of writing, coming soon to
Postgres).

Tip

Snowflake IDs and UUIDv7s encode within them precise timestamps, and
are sortable by time. Additionally, Snowflakes encode a machine-specific ID
and local sequence number, enabling greater collision detection and control
for distributed systems.

5.5 Homemade multi-master replication

For as long as I can remember, people in IT have been asking me: "Can I
write to the same filesystem, but on multiple drives?", "Can I write to the
same database, but on multiple servers?", etc. — which means that essentially

they want shared storage, but also high availability for that same storage.
When I explain that they can’t have both without compromises, they then
complain that they don’t want to take the performance hit of waiting for
locking or consistency. It’s a fundamental problem that’s sadly not well
understood: You can only have two out of the following three: consistency,
availability and partition tolerance, and one out of consistency or low latency.

CAP / PACELC theorems

In 1998, Eric Brewer stated that distributed systems can only provide two out
of the following three guarantees simultaneously: Consistency (that reads get
the most recent data or error out), Availability (every request gets a response
without the guarantee that it’s the most recent data), network Partition
tolerance (continued operation despite messages being dropped or delayed).
This was formally proven and is now known as the CAP theorem.

By extension, in 2010, Daniel Abadi took things a step further and stated that
if you have a network Partition, you have to choose either Availability or
Consistency, Else, the choice is between Latency and loss of Consistency.
This is much more relevant for our discussion about databases, and
specifically PostgreSQL, as we expect them to be online most of the time. It
is known as PACELC and, as a theorem, it has also received formal proof.

The understanding that we can gain from these theorems is that there are
unavoidable trade-offs to be made when constructing distributed systems.

PostgreSQL replication is a shared-nothing architecture, in keeping with the
requirement to provide redundancy and high availability. Therefore currently
the only sane way to have a multi-master database cluster is to establish
replication connections between multiple independent database instances
running on different nodes.

PostgreSQL offers a wonderful feature in logical replication, and there is also
an extension out there called pglogical that gives you some additional
features over native logical replication. So, our friends at Frogge Emporium
thought, why not use unidirectional logical replication in both directions, in
order to make it bidirectional, or multi-master? It’s easy enough to set this up
going in both directions by reading the manual, and we won’t go into too

many details here (especially as I don’t particularly want you to be using it) 
— but let’s look at what happens next.

The first problem has to do with the concept of replication origins, or which
database or node the transaction that’s being replicated originated from.
Remember that Postgres replication is just WAL getting streamed from one
node to the other. If you don’t filter out other nodes when you set up the
logical replication publications and subscriptions, you will attempt to
replicate your own transactions that the other nodes received and sent back to
you. Inevitably, this will cause messages to ping-pong across your cluster
with the eventual result of this feedback loop being your disks filling up with
extraneous WAL.

Note

The Write-Ahead Log (WAL) is PostgreSQL’s transaction log, used to
ensure data integrity. More information on WAL can be found here:
https://www.postgresql.org/docs/current/wal-intro.html

Once that is dealt with via the origin=NONE or forward_origins='{}'
options for native logical replication or pglogical respectively, we can see
that our hack appears to work. Let’s set up a bi-directional multi-master
replication between hosts alpha and beta, previously configured to allow
connectivity between them, and populate a table with sample data.

Tip

To set up logical replication, you need to configure things such as
wal_level=logical, listen_addresses, and Host-Based Authentication
(HBA) as per https://www.postgresql.org/docs/current/logical-
replication.html

From host alpha, we create our publication and table:

CREATE PUBLICATION multi_alpha FOR ALL TABLES;

CREATE PUBLICATION

CREATE TABLE support.tickets (

 id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 content text,

 status smallint,

 opened_at timestamptz DEFAULT CURRENT_TIMESTAMP NOT NULL,

 closed_at timestamptz

);

CREATE TABLE

INSERT INTO support.tickets (content) VALUES ('first'), ('second');

INSERT 0 2

SELECT id, content FROM support.tickets;

 id | content

----+---------

 1 | first

 2 | second

(2 rows)

Great, that’s what we expect to see.

Figure 5.1 Unidirectional logical replication

Now let’s go to host beta, create the same schema, subscribe to alpha and
create a publication too:

CREATE TABLE support.tickets (

 id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 content text,

 status smallint,

 opened_at timestamptz DEFAULT CURRENT_TIMESTAMP NOT NULL,

 closed_at timestamptz

);

CREATE TABLE

CREATE SUBSCRIPTION multi_alpha

 CONNECTION 'host=alpha dbname=frogge'

 PUBLICATION multi_alpha

 WITH (origin=NONE);

NOTICE: created replication slot "multi_alpha" on publisher

CREATE SUBSCRIPTION

SELECT id, content FROM support.tickets;

 id | content

----+---------

 1 | first

 2 | second

(2 rows)

CREATE PUBLICATION multi_beta FOR ALL TABLES;

CREATE PUBLICATION

This is the arrangement we’ve set up now:

Figure 5.2 Logical replication in both directions

Nice, so all we need to do now is subscribe alpha to beta and we have
bidirectional replication. On alpha:

CREATE SUBSCRIPTION multi_beta

 CONNECTION 'host=beta dbname=frogge'

 PUBLICATION multi_beta

 WITH (origin=NONE);

WARNING: subscription "multi_beta" requested copy_data with origin = NONE

 but might copy data that had a different origin

DETAIL: The subscription being created subscribes to a publication

 ("multi_beta") that contains tables that are written to by other

 subscriptions.

HINT: Verify that initial data copied from the publisher tables did not

 come from other origins.

NOTICE: created replication slot "multi_beta" on publisher

CREATE SUBSCRIPTION

Err… all right? It’s warning us that because we set our subscription to ignore
other origins, it doesn’t really know for sure that the rows we are copying
originated on beta. Let’s insert a row here on alpha:

INSERT INTO support.tickets (content) VALUES ('third');

INSERT 0 1

SELECT id, content FROM support.tickets;

 id | content

----+---------

 1 | first

 2 | second

 3 | third

(3 rows)

And let’s check that it arrived on beta:

SELECT id, content FROM support.tickets;

 id | content

----+---------

 1 | first

 2 | second

 3 | third

(3 rows)

We now have bi-directional logical replication established and we can write
to both nodes, so let’s also insert a row on beta.

INSERT INTO support.tickets (content) VALUES ('fourth');

ERROR: duplicate key value violates unique constraint "tickets_pkey"

DETAIL: Key (id)=(1) already exists.

Oops. What happened here? It looks like beta tried to insert a row but the
sequence generating the primary key was still at 1, and we already had that
key in the table because it was inserted by node alpha. For logical
replication, you generally need a primary key or other unique constraint, and
these tend to get values from sequences. You need to make sure that no node
re-uses sequence numbers from another node because, as we just saw, that
creates a data conflict.

Sequence synchronization is a complicated problem, you have to either keep
the whole cluster in sync with every write (which is going to be disastrous for
performance) or pre-allocate ranges to each node, which is a large
administrative burden to manage manually. How do you divide the ranges,
what happens when those ranges run out, and how do you deal with new
nodes added?

Let’s see what happens when we try something different, which you are
bound to do in the real world: change the schema of the database.

Still on beta, we change the name of column opened_at to logged_at:

ALTER TABLE support.tickets RENAME opened_at TO logged_at;

ALTER TABLE

Meanwhile, some unaware user on alpha inserts a row:

INSERT INTO support.tickets (content) VALUES ('fourth');

INSERT 0 1

SELECT id, content, opened_at FROM support.tickets WHERE content='fourth';

 id | content | opened_at

----+---------+-------------------------------

 4 | fourth | 2024-02-01 19:24:09.162218+00

(1 row)

All right so far. Let’s check on beta:

SELECT id, content, logged_at FROM support.tickets WHERE content='fourth';

 id | content | logged_at

----+---------+-----------

(0 rows)

The row didn’t make it over. Checking the PostgreSQL log on beta reveals:

Feb 1 19:24:10 beta postgres[22139]: [2] ERROR: logical replication target

 relation "support.tickets" is missing replicated column: "opened_at"

Feb 1 19:24:10 beta postgres[22139]: [3] CONTEXT: processing remote data

 for replication origin "pg_16596" during message type "INSERT" in

 transaction 879, finished at 0/1DB9628

Feb 1 19:24:10 beta postgres[21848]: [9] LOG: background worker "logical

 replication worker" (PID 22139) exited with exit code 1

So by allowing the schema to become inconsistent, even for a short while, we
not only broke data consistency across our cluster, but we also threw the
PostgreSQL logical replication worker process in a crash/restart loop.

The lack of provision for consistent DDL replication is a very important
blocker for rolling your own multi-master distributed Postgres cluster.
Factoring in the orchestration needed to introduce schema changes increases
complexity significantly, as the procedure has to be managed carefully to
avoid generating conflicts and breaking replication, and it also needs to be
balanced against uptime requirements.

Historically, there have been attempts to offer PostgreSQL multi-master
solutions but they focused on higher levels than the actual database, such as
the two replication tools originally released in 2007: Londiste, implemented
in Python, and Bucardo, written in Perl (the horror!)

Practically speaking, for any enterprise usage requiring full PostgreSQL
performance, you would want to go with a native PostgreSQL system
performing the replication at the database level. The most advanced and
proven solution is EnterpriseDB’s Postgres Distributed (PGD), originally
developed as 2ndQuadrant’s BDR, which is at the time of writing proprietary
software. A new contender is the open source Spock solution developed by
pgEdge, also forked from 2ndQuadrant’s pglogical code.

However, what you should do is spend some time to consider whether you
actually need multi-master replication. The ability for the application to write
"on any node" may sound good on paper but it usually comes with baggage
that the user has not considered, with implications both on the database
administration side but also from the application aspect because it needs to be
multi-master aware. The only valid use cases I can think of are:

Extreme availability — derived from the instantly available redundancy
and the ability to perform minor- and major-version upgrades with no
downtime
Geo-distribution of data with minimal latency — derived from the fact
that both reads and writes to the database are local to each physical
location

5.6 Homemade distributed systems

A distributed system doesn’t have to be multi-master. I believe that the
normal clustering capabilities of PostgreSQL via streaming and logical
replication qualify as being distributed systems in their own right. Therefore
the CAP and PACELC theorems that we read about previously still apply.

I can assure you that attempts to write your own replication mechanism, or
even worse, using external Extract/Transform/Load (ETL and ELT) systems
or Change Data Capture (CDC) tools to implement replication, are not going
to result in a better feature set or better performance than native PostgreSQL
replication.

But even when using these reliable and performant methods you can still get
into trouble. For this example, we have already configured streaming
replication between the primary host alpha and standby host beta. On alpha,
we create a table and insert some data:

CREATE TABLE test.accounts (

 id bigint PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 balance numeric NOT NULL,

 updated_at timestamp with time zone DEFAULT CURRENT_TIMESTAMP

);

CREATE TABLE

INSERT INTO test.accounts (balance) VALUES (100);

TABLE test.accounts;

INSERT 0 1

 id | balance | updated_at

----+---------+-----------------------------

 1 | 100 | 2024-01-17 19:08:31.0284+00

(1 row)

A very common pattern, witnessed many times in the field, is for the
application to read from one of the read replicas (PostgreSQL standbys) and
write to the primary. We are simulating a minute’s worth of replication lag
between the two nodes by setting the configuration parameter
recovery_min_apply_delay to 60000 (milliseconds) on the standby beta.
The application now reads the account balance from the standby to charge the
account, and update it on the primary (as the standby is read-only):

On the standby node beta we read the balance:

SELECT balance FROM test.accounts WHERE id=1;

 balance

 100

(1 row)

On the primary node alpha we update the balance:

UPDATE test.accounts SET balance=90, updated_at=now() WHERE id=1;

TABLE test.accounts;

UPDATE 1

 id | balance | updated_at

----+---------+-------------------------------

 1 | 90 | 2024-02-17 19:09:03.172174+00

(1 row)

Meanwhile, another part of the application tries to read the balance in order
the apply the annual bonus gift to the account. On the standby beta:

SELECT balance FROM test.accounts WHERE id=1;

 balance

 100

(1 row)

Based on the inconsistent view of the data, the application mistakenly thinks
that the account balance is 100, and applies the gift of +50 to that amount on
alpha:

UPDATE test.accounts SET balance=150, updated_at=now() WHERE id=1;

TABLE test.accounts;

UPDATE 1

 id | balance | updated_at

----+---------+-------------------------------

 1 | 150 | 2024-01-17 19:09:34.442339+00

(1 row)

The business has lost 10 monies and the customer received an unexpected
gift due to a violation of the Consistency property of the ACID compliance
requirements for databases (Atomicity, Consistency, Isolation, Durability).

If PostgreSQL is ACID compliant, what has gone wrong here? Well, the
PostgreSQL database server guarantees ACID safety, but what we had here
was the application trying to perform atomic (or indivisible) transactions
across two different database nodes - a distributed transaction.

We can see that distributed transactions are not so simple to deal with. What
is needed in this case is a transaction with two phases that applies the Two-
Phase Commit (2PC) protocol using PREPARE TRANSACTION and its associated
commands. However, prepared transactions are complicated and hard to
implement on systems with latency or replication lag because they should be
short-lived. Then they would have to be run exclusively on the primary,
negating the benefit of having a read replica. Additionally, they cause locking
of objects in the database which can cause delays in the application, and are
very often left behind incomplete (e.g. when an application component
crashes or is restarted and loses its state).

On the primary alpha:

TRUNCATE test.accounts;

TRUNCATE TABLE

INSERT INTO test.accounts (balance) SELECT generate_series(1,100000000);

INSERT 0 100000000

Now let’s go and run a long-running report query on the standby beta:

SELECT sum(balance) FROM test.accounts

UNION

SELECT avg(balance) FROM test.accounts;

Meanwhile, users keep using the database. Some data changes are made on
alpha:

DELETE FROM test.accounts WHERE id BETWEEN 40000001 AND 40000020;

DELETE 20

VACUUM test.accounts;

VACUUM

This deleted a few accounts and cleaned up afterward with VACUUM. But this is
what is happening now on beta - our query has failed:

SELECT sum(balance) FROM test.accounts

UNION SELECT avg(balance)

FROM test.accounts;

ERROR: canceling statement due to conflict with recovery

DETAIL: User query might have needed to see row versions that must be removed.

Why has this happened? What we have just seen is what’s known as a
(distributed) serialization anomaly or a violation of the ACID transaction
Isolation property. Specifically, this is a type of read-write conflict or
unrepeatable read, where a transaction has read the data while a second
transaction overwrote some of the data before the first one got the chance to
complete.

You can probably prevent this from happening in most cases by enforcing
synchronous replication, but that is a horrendous trade-off and a huge
sacrifice of performance that should be considered only when extreme
correctness and consistency requirements trump everything else. It is self-
evident that the round-trip time required for synchronicity, even with the
fastest networks, will result in latency that will bottleneck database
performance much sooner than network or PostgreSQL replication
performance limits can be reached. The extreme in the other direction is
accepting the possibility of stale reads or retrieving out-of-date data in a
tradeoff for low latency.

These conditions apply to multi-master systems as well. The problem lies
with the fact that the application-side logical "transactions" are executed
spread across multiple database nodes. If the application is using one node at
a time to complete the atomic operation, that’s fine because it can be handled
using normal conflict management techniques. However, when the
application tries to use multiple nodes within the same transaction, we need
strong consistency and isolation requirements, which brings us back to
PACELC.

Using read replicas to offload some of the work is fine and perfectly valid,
but not within an application atomic operation that forms a distributed
transaction. There is no good or easy way to avoid these types of issues
without an authoritative global transaction manager. Global transaction
managers necessarily form performance bottlenecks and they can become a
single point of failure.

In closing, building distributed databases is no simple feat because of the
limitations of the laws of physics — the industry has struggled for a long time
to create solutions that balance competing priorities. Unless your use case is
extremely narrow (such as one table, with defined protections and conflict
management rules) you will probably not do a good job improvising a
distributed solution. The effort required to implement or troubleshoot it will
probably inflate the scope of your project to many times what it would be
before.

5.7 Summary

SQL_ASCII is not a character encoding so much as the absence of one. If
you don’t want to risk mixing encodings irreversibly and you enjoy the
ease of automatic character set conversion, make sure you use UTF-8
for your database.
PostgreSQL RULEs are not related to rules as defined in other DBMSs.
RULEs are complicated to understand and are mainly there as Postgres
internal machinery. In most cases they don’t behave as the user expects
them to and TRIGGERs are best used instead.
Using JSON(B) values with relational access patterns makes for less
efficient SQL which is harder to read and might not perform as well. It’s
better not to mix the SQL and NoSQL paradigms, but use each facility
for what it’s best at doing.
uuids take up more storage space than even bigints and indexing them
is less efficient. They may guarantee a range of values that you simply
don’t require for your use case, and an integer index might be enough to
guarantee uniqueness.
Bi-directional or multi-master replication is more complex than what
appears at first sight. For practical use in a production system, there is a
very long list of prerequisites, considerations and caveats. If your use
case indeed justifies setting up a multi-master system, you are better off
using an established multi-master solution whose developers have given
thought to these issues rather than re-inventing the wheel.
All of the above apply to homemade distributed systems as well and it is
not recommended to set out building them unless your scope is very
narrowly focused. You need to consider the potential for distributed
serialization anomalies and the very real trade-offs laid out in the CAP

and PACELC theorems.

6 Performance bad Practices
In this chapter

Going to production with the default PostgreSQL configuration
Managing connection limits and life cycle
Letting transactions go on for too long
Turning off autovacuum may help… for a short while
Explicit locking and its associated risks
Having too few or too many indexes and the impact this has on
performance

We know by this point in the book that PostgreSQL is a database
powerhouse, a flexible database suited for many uses that can perform
extremely well when you ask it nicely. And by asking it nicely we mean
being aware of how it does things so that we can avoid entering code,
configuration and usage patterns that lead to sub-optimal outcomes. It’s now
time to start discussing some really common ways of hurting performance in
Postgres. These may seem obvious to some but surprising to others, so
they’re well worth exploring.

6.1 Default configuration in production

Let’s start at the top: You’ve just freshly installed PostgreSQL on your shiny
new cloud compute instance, memory-optimized with 16GB of RAM, all set
for database awesomeness. You decide to restore your database into this
instance from the latest dump of the data you have.

Let’s generate a decent-sized database, using our old friend pgbench — the
utility that comes with Postgres for running benchmark tests. First, we create
it from the command line, as user postgres:

createdb pgbench

We now have an empty database to populate:

pgbench -i -s 1000 pgbench

dropping old tables...

NOTICE: table "pgbench_accounts" does not exist, skipping

NOTICE: table "pgbench_branches" does not exist, skipping

NOTICE: table "pgbench_history" does not exist, skipping

NOTICE: table "pgbench_tellers" does not exist, skipping

creating tables...

generating data (client-side)...

100000000 of 100000000 tuples (100%) done (elapsed 548.92 s, remaining

0.00 s)

vacuuming...

creating primary keys...

done in 761.00 s (drop tables 0.00 s, create tables 0.03 s, client-side

generate 549.59 s, vacuum 0.74 s, primary keys 210.64 s).

Note

The execution time here isn’t really important, as we are just running this to
have some data to dump and restore, and see how long it takes to restore.

After populating, we perform a dump:

pg_dump pgbench > /tmp/pgbench.dump

ls -lah /tmp/pgbench.dump

-rw-rw-r-- 1 postgres postgres 9.9G May 12 19:16 /tmp/pgbench.dump

And now we have our dataset in pgbench.dump. Let’s wipe, and restore:

dropdb pgbench

createdb pgbench

This time, we want to time how long it takes to restore:

time psql pgbench < /tmp/pgbench.dump

SET

SET

SET

SET

SET

 set_config

(1 row)

SET

SET

SET

SET

SET

SET

CREATE TABLE

ALTER TABLE

CREATE TABLE

ALTER TABLE

CREATE TABLE

ALTER TABLE

CREATE TABLE

ALTER TABLE

COPY 100000000

COPY 1000

COPY 0

COPY 10000

ALTER TABLE

ALTER TABLE

ALTER TABLE

real 44m15.279s

user 0m13.108s

sys 0m20.280s

Okay, that is certainly a number. Is it good? Is it bad?

Let’s change some configuration settings and try again to see if we can
improve upon this. In postgresql.conf we change some selected parameter
values to:

shared_buffers = 3GB #1

work_mem = 128MB #2

maintenance_work_mem = 512MB #3

We need to restart PostgreSQL for the shared_buffers change to take effect.
After doing that, let’s see if we can make a difference:

dropdb pgbench

createdb pgbench

time psql pgbench < /tmp/pgbench.dump

...

real 26m17.669s

user 0m12.229s

sys 0m19.520s

This is a significant difference, it takes less than 60% of the time we needed
with the default postgresql.conf values.

So isn’t the default configuration made up of the most commonly used
values, or those that have empirically given the best results?

No. Unlike other bloated database systems you may be familiar with, the
basic idea behind the default configuration of PostgreSQL is to have a
baseline system that will "just work" in any machine (within reasonable
bounds — your 486SX/25 from 1994 with 24MB RAM will be below the
minimum requirements, but only just). As we can see in the documentation,
the default memory allocation for things such as shared_buffers is only
128MB, and work_mem just 4MB, so you have to understand that the default
configuration is geared towards simply getting up and running on just about
any system no matter how small.

What we’ve just done here isn’t really "database tuning" — it’s basic due
diligence when you’re testing or staging a PostgreSQL server for production
usage. The new shared_buffers value increased the memory available to
Postgres for buffers (blocks read from disk and/or used in operations),
work_mem increased the amount of non-shared memory available to individual
operations, and maintenance_work_mem the memory available for operations
like CREATE INDEX or VACUUM.

By all means, it doesn’t mean that you have to choose some parameter values
and stick with them for good, but it does mean that the default configuration
will be woefully inadequate for most kinds of production workloads.
Additionally, there are many more knobs to tweak than just memory settings.

When you’re performing special operations such as data loads, it may even
be beneficial to forgo some of the good conventions for running PostgreSQL
in production and optimize it for all-out performance at the expense of
reliability or crash tolerance (because you don’t care about that during a
maintenance window that you’re using to load a bunch of data into the
database).

Obviously, there are other much more varied database workloads besides
loading data and other factors, such as concurrency, come into play.
However, as we demonstrated through this example, and as you will find in
the following sections in this chapter, there are ways to adapt your system to
better suit them. Just don’t trust the default configuration to be sufficient for
any sort of realistic workload.

6.2 Improper memory allocation

So now we have awareness of the fact that you shouldn’t take PostgreSQL
into production usage with the default settings. Specifically, in the previous
section we allocated more RAM for certain uses and that helped improve
performance.

Let’s run a baseline standard pgbench test for 5 minutes (300 seconds) with
the database we’ve just restored to see what sort of performance figures we
get.

Tip

Make sure you run benchmarks from another host, in order to avoid
overloading the database server with too much work. Ideally, the host you
run the tests from should be powerful enough to be able to oversaturate the
database server with requests.

pgbench -U postgres -h test01 -c 100 -j 24 -T 300 pgbench

pgbench (17.0 (Ubuntu 17.0-1.pgdg24.04+1))

starting vacuum...end.

transaction type: <builtin: TPC-B (sort of)>

scaling factor: 1000

query mode: simple

number of clients: 100

number of threads: 24

maximum number of tries: 1

duration: 300 s

number of transactions actually processed: 323961

number of failed transactions: 0 (0.000%)

latency average = 92.347 ms

latency stddev = 60.183 ms

initial connection time = 824.391 ms

tps = 1082.342941 (without initial connection time)

On this system, with the configuration settings we selected before, we’re
getting 1082 transactions per second (TPS) with a concurrency of 100 clients.
We want to give our queries the best chance of executing smoothly and
successfully, so we ramp up shared_buffers and work_mem to see if this will
improve our performance further:

shared_buffers = 12GB #1

work_mem = 2GB #2

We restart Postgres for the change to take effect, and re-run our pgbench test:

pgbench -U postgres -h test01 -c 100 -j 24 -T 300 pgbench

pgbench (17.0 (Ubuntu 17.0-1.pgdg24.04+1))

starting vacuum...end.

transaction type: <builtin: TPC-B (sort of)>

scaling factor: 1000

query mode: simple

number of clients: 100

number of threads: 24

maximum number of tries: 1

duration: 300 s

number of transactions actually processed: 319069

number of failed transactions: 0 (0.000%)

latency average = 93.930 ms

latency stddev = 65.995 ms

initial connection time = 297.914 ms

tps = 1062.819169 (without initial connection time)

We can see that the TPS stayed roughly the same, if not a little worse. It
therefore looks like we may have been tuning our parameters in the wrong
direction!

Now let’s find out what would happen if 1000 — ten times as many — clients
hit the database with these same settings by setting max_connections =
1000, restarting the cluster for the change to come into effect, and simulating
a heavy workload:

pgbench -U postgres -h test01 -c 1000 -j 24 -T 300 -P 10 pgbench

pgbench (17.0 (Ubuntu 17.0-1.pgdg24.04+1))

starting vacuum...end.

progress: 10.0 s, 147.8 tps, lat 2532.664 ms stddev 1511.880, 0 failed

^C

After the first 10 seconds, the test hangs, and we can see that there is
something wrong. We cancel with Ctrl+C and by looking at the system logs
on the database server we find:

kernel: Out of memory: Killed process 15255 (postgres) total-vm:1674628kB,

 anon-rss:3208kB, file-rss:5760kB, shmem-rss:0kB, UID:107 pgtables:152kB

 oom_score_adj:0

kernel: systemd-journald[436]: /dev/kmsg buffer overrun, some messages lost.

kernel: systemd-journald[436]: Under memory pressure, flushing caches.

systemd[1]: postgresql@17-main.service: A process of this unit has been

 killed by the OOM killer.

systemd[1]: postgresql@17-main.service: Failed with result 'oom-kill'.

systemd[1]: postgresql@17-main.service: Consumed 1min 18.570s CPU time.

Warning

Running a heavy workload such as the above stress test, especially when
PostgreSQL’s memory allocation hasn’t been properly configured, can crash
your system in unpredictable ways.

This oom-killer is Linux’s Out-of-Memory Killer, run by the Linux kernel
to recover memory when the system is critically low on memory. It chooses
processes to terminate based on their OOM score (found in
/proc/<PID>/oom_score). What this means is that there is a possibility that it
may not choose the fresh PostgreSQL backend process which is using lots of
RAM, but some other necessary process or application on your system that
happens to use a lot of memory.

But why did we run out of memory? Remember, we allocated 12GB of
shared_buffers and 2GB of work_mem. This means that we potentially
allocated 2GB of RAM for each node of the execution plan for each running
query. Keep in mind that each of the 1000 connected sessions may run a
query utilizing many nodes. It’s obvious that we don’t have enough available
RAM to do that, and we need to be aware that things can get out of hand
quickly if we have complex queries with many plan nodes and/or parallel
execution.

Note

It is important to avoid the OOM killer because when a backend process gets
killed PostgreSQL terminates all other active backends to avoid operating
with shared memory that may have potentially been corrupted. Postgres will
then go into crash recovery mode, which means that this may trigger failover
to a replica or other ugliness.

You should only allocate enough work_mem to cover your queries' needs and
no more. As with many things in this book, this is entirely dependent on the
workload. If you choose a small amount of work_mem, more complex queries
such as those involving sorting and aggregation may run out of RAM for
their operations and spill over into temporary files on disk, which is many
orders of magnitude slower than in-memory operation. However, we saw
firsthand that choosing a work_mem size that is too big can jeopardize your
queries because the system may run out of memory and kill their processes,
or even worse, PostgreSQL itself or some other critical process. Fortunately,
work_mem can be SET at the session level so we can configure the system with
some sensible default and only increase work_mem for those queries that
actually need the extra memory to run.

Similarly, there are recommendations out there that the ideal amount of
shared_buffers is 25% of available RAM, or any number of other formulas
to calculate it. You should probably not follow these blindly as the right
value is again workload-dependent: OLTP usage may benefit from having a
large shared memory that can fit the part of the dataset that’s in use, whereas
the same large shared_buffers may be wasted on an OLAP workload that
only visits each buffer once. You may even have mixed use which will
require you to take a careful look at balancing the memory allocation. In this
case, our shared_buffers choice is clearly excessive because it doesn’t help
with our workload at all.

Warning

Be careful to always include the unit used after your value. If you don’t, the
default unit used for shared_buffers is the buffer (8192 bytes), so you’re
specifying how many buffers to allocate — therefore there’s a very big
difference between 1024MB and 1024 (buffers) which is just 8 megabytes.
Confusingly, in other places such as work_mem and maintenance_work_mem

Postgres uses kB as the unit, for min_wal_size and max_wal_size it uses
MB, and so on.

Proper memory allocation is important and you’re stuck between a rock and a
hard place, because the defaults will most likely be insufficient for your
workload, but bumping them up significantly may cause even worse
performance and stability problems. Oftentimes, you can’t avoid trial-and-
error as your workload is what’s going to dictate how much you need for
each value. As a reminder, you should never try things out in production, but
rather on staging systems with similar data and running similar workloads.

6.3 Having too many connections

It is quite common to see PostgreSQL configurations with large connection
limits, such as max_connections = 2000. In my experience, it seems to be
widely believed by developers that the more connections the database can
handle, the better it will be for the application.

Let us try out an experiment to see how PostgreSQL will hold up to large
numbers of connections. As we saw in the previous section, our memory
allocation strategy proved dangerous, so we are now going to choose some
more reasonable values for our server. By allocating a more conservative
value for shared_buffers and especially work_mem, as it is relevant to the
number of queries we’re running, we are reducing the possibility of running
out of memory. We will also change the connection limit to allow 2000
clients.

shared_buffers = 1GB

work_mem = 4MB

max_connections = 2000

After a Postgres restart, which is necessary for our changes to take effect, we
bring out pgbench again and run a series of tests with different numbers of
clients, starting with 2000:

pgbench -U postgres -h test01 -c 2000 -j 24 -T 300 pgbench

pgbench (17.0 (Ubuntu 17.0-1.pgdg24.04+1))

starting vacuum...end.

transaction type: <builtin: TPC-B (sort of)>

scaling factor: 1000

query mode: simple

number of clients: 2000

number of threads: 24

maximum number of tries: 1

duration: 300 s

number of transactions actually processed: 84835

number of failed transactions: 0 (0.000%)

latency average = 5535.267 ms

latency stddev = 13696.921 ms

initial connection time = 69772.527 ms

tps = 352.083626 (without initial connection time)

We next try 1500, 1000, 500, and so on. The results are:

Table 6.1 test results showing TPS & latency with various numbers of clients

Number of clients TPS Latency average

2000 352.1 5535.267 ms

1500 506.8 2869.986 ms

1000 586.1 1694.616 ms

500 628.4 794.688 ms

250 635.7 392.554 ms

125 556.9 224.411 ms

63 613.0 102.758 ms

32 572.3 55.907 ms

16 301.8 53.009 ms

Let’s plot this table out onto a chart and examine the results.

Looking at the plot, we see that the TPS roughly plateaus between 1500 and
32 clients with low values at the extremes of 2000 and 16 clients.

The latency, though, shows a clear logarithmic trend, going from a very bad
5.5 seconds to stabilizing around 53 ms below 32 clients.

Figure 6.1 TPS & latency test result plot with various numbers of clients

What does this all tell us? It tells us that we requested excessive concurrency
which was too much for our modestly-sized server. When serving 2000
clients the server was struggling, which is reflected by the low TPS and high
latency. Nonetheless, does it seem like it was more able to deal with the
workload between 1500 and 32 clients?

Yes, at first glance it does, but the latency values tell the whole story of how
overloaded the server was, with it only recovering at 32 clients and below. It
was only able to sustain this TPS plateau by trading latency for higher
concurrency — which, incidentally, is also how you can get around network
latency because multiple connections make it less relevant for total
throughput. The low TPS value at 16 clients just means that we weren’t
giving the server as much work as it could perform.

Multitasking aside, a computer can only do as much as it’s got the resources
for. If you’re asking for 2000 things to be done at the same time and don’t
have 2000 CPU cores, you should understand that this is unreasonable. As an
empirical rule of thumb, you shouldn’t have more PostgreSQL connections
than 4 times the number of your cores. But again: don’t use my guidance as
canon, because your optimal ratio is bound to be workload-specific.

Lightweight Lock contention

Accessing the same objects from multiple connections may incur many
Lightweight Locks (LWLocks or "latches" as they are known in other database
systems). Those are part of PostgreSQL’s Multi-Version Concurrency
Control (MVCC) mechanism and protect data in shared memory to ensure
consistent reads and writes. Under high concurrency, a LWLock may become
heavily contended, and there is no fair queuing for LWLocks, it’s more or less
random. Therefore lots of lockers can slow each other down and reduce
overall query throughput. A good indication that you may have excessive
concurrency is lots of wait_event_type: LWLock appearing in the
pg_stat_activity monitoring view.

For PostgreSQL to have a performance headroom to better deal with
increases or spikes in usage, you should trade off application-side latency for
overall database server health. Instead of immediately opening as many client

connections as the application requires, restrict the number of clients and
make the application requests queue (hopefully not for long) for an available
connection. This means that the application should be able to wait, so you
may have to increase timeouts on that end.

If you cannot restrict the number of connections the application requests, a
good solution is to leverage connection pooling. A connection pooler such as
PgBouncer can be inserted between the application and database and
implement this nicely for you. It can accept thousands of connections from
the application but only allow as many clients as you specify through to
PostgreSQL and make the rest wait for their turn. When you give this a try,
and if you monitor database activity via pg_stat_activity, you may find
that the real concurrency (i.e. how many things your application is actually
trying to do at the same time inside the database vs. how many connections it
wants to open) is much lower than what you expected. In the wild,
applications with 5000 connections have been seen only running about 15-30
active tasks concurrently in the database.

Regarding excessive concurrency, remember that PostgreSQL is a multi-
process system with a "process per user" model. This means that every client
connects to a backend process, and all this is coordinated by the postmaster
supervisor process. PostgreSQL’s inter-process communication (IPC) is via
semaphores & shared memory.

This tells us that, if we have too many processes running in our system, this
incurs operating system overhead and brings the risk of excessive CPU
context switching. Needless to say, this is bad for server performance.

Note

Process thrashing is when you have too many processes for them to get
scheduled effectively and each one gets a tiny slice of execution time,
progressing very slowly as the system spends more time performing context
switches than it does executing the actual processes. Additionally, the
excessive memory usage caused by too many backends may cause thrashing
of memory in and out of swap, and we remember that disk access is vastly
slower than RAM.

To wrap up, while you may think that you are making your application run
faster by parallelizing, you may actually be hampering its performance by
swamping your database server with too much work. "Throttle" it, or
introduce latency on the application side, to save your DB server’s
performance. It sounds counter-intuitive but it doesn’t necessarily slow
anything down –- your queries will execute faster on a server that’s not
overloaded!

6.4 Having idle connections

Let’s now examine why you shouldn’t keep idle connections around on your
PostgreSQL server.

6.4.1 What is MVCC?

It’s worth our while to briefly discuss PostgreSQL’s transactions and its
concurrency control at this point.

PostgreSQL uses Multi-Version Concurrency Control (MVCC) rather than
locking to enable high concurrency and achieve high performance. With
MVCC, reading from the database never has to wait. Writing to the DB
doesn’t block reading, and reading doesn’t block writing. As you may have
guessed from the name, the way the MVCC system works is that each write
creates a new version of a tuple (row). We therefore have what’s called
snapshot isolation: each transaction has a point-in-time consistent view (or
snapshot) of the data. Postgres uses timestamps and transaction IDs (XIDs) to
enable the activity tracking that makes enforcing these consistent views
possible, that is, determine which tuples are visible from each transaction. A
snapshot, which contains the earliest still-active transaction, the first as-yet-
unassigned transaction, and the list of active transactions, is obtained by each
transaction from the Transaction Manager. You can get a fresh snapshot via
the function pg_current_snapshot().

The timeline of PostgreSQL transactions looks like this:

Figure 6.2 PostgreSQL transaction timeline showing linear sequence of XIDs

From within transaction 1000, you may or may not be able to see the results
of transactions 999 and 1001, depending on whether they were committed or
aborted before transaction 1000 completes.

6.4.2 The issue with idle connections

It’s easy to think that idle sessions are innocuous. After all, they’re not
performing any task in the database, so it should logically follow that they
don’t affect the database’s performance.

It is quite common to see systems in production with thousands of idle

connections, especially when language-side connection poolers are used
(those offered by the programming language or framework, as opposed to
intermediary or server-side). Those then keep thousands of database sessions
open in order to have a pool of connections available to hand over to the
application. The worst culprits are usually Java frameworks that tend to
distance developers so far away from the database through abstractions that
they usually have no idea how a database operates or what they should and
shouldn’t do.

We do know though that PostgreSQL’s MVCC mechanism maintains
snapshots for each and every transaction. This means that every time a
transaction requests a snapshot before beginning to do its work, Postgres has
to examine all open connections to compile the snapshot information. This is
a consequence of having to check what each session is doing — we don’t
know that they’re idle until we check. As veteran PostgreSQL developer Tom
Lane succinctly put it in an email response to the pgsql-performance
mailing list, this makes the [computational] cost of taking a snapshot
proportional to the total number of connections.

As a result, even when your session is sitting idle doing nothing, it is
consuming system resources and slowing down subsequent connections
being opened, a situation that could be described as snapshot contention.

How do we end up with idle connections? It can simply be poor application
design — unintentional, such as allowing many connections for no reason, or
intentional, such as storing application queues or states of an application with
many components or workers in a single database. Or, as we previously
mentioned, it can be an attempt to maintain throughput and mitigate latency
through increasing concurrency. It’s also a way to deal with sudden spikes in
requests (although the preferred solution would rather put a connection
pooler in between the application and database).

This doesn’t mean that the connections are totally unused; it is sufficient for
them to remain idle most of the time (e.g. because of the application not
requesting queries very often). Even so, they negatively affect the
performance of those connections that are indeed active in a very real and
measurable way.

Optimizations for connection handling, specifically in dealing with the
process of obtaining a snapshot for a new connection, arrived in PostgreSQL
14, eliminating much of the bottleneck but not entirely. Obtaining snapshots
for many incoming connections is still computationally significant, even if
the situation has improved. Moreover, even if the relevant PostgreSQL
internals have been optimized, you still have to remember that it’s a multi-
process system — every connection requires a new backend process, and the
operating system overhead of having to do process accounting, scheduling,
and IPC for thousands of extra processes is certainly not negligible.

As a final note, and as a deterrent, you should also consider the possibility
that the application might suddenly decide to utilize thousands of those idle
connections at the same time due to a spike in usage (e.g. markets opening).
After all, these connections have been made available to it. Such a scenario is
bound to cause a server performance meltdown.

Leveraging a transaction pooler, such as PgBouncer in Transaction Mode,
can help if you find yourself in a situation where you need to open many
connections that may be mostly idling. PgBouncer will just hand over the
unused connections to some other transaction that needs them, thereby
mitigating the system overhead. This is preferable to using
idle_session_timeout to automatically close idle sessions, which may not
be appreciated by unaware clients or applications.

6.5 Allowing long-running transactions

PostgreSQL gurus will invariably tell you to avoid having long-running
transactions. But why? First of all, let’s differentiate between sessions that
are active and just taking a long time to complete, and those that are idle,
doing nothing inside a transaction. We will start by examining the latter.

6.5.1 Idle in transaction

Simply put, a session that is idle in transaction, as reported by
pg_stat_activity, is one that has begun a transaction, is not running an
active query, and has not rolled back or committed the transaction. A
common case is when a client opens a connection and runs BEGIN to start a

transaction, and then lets the connection idle. Badly written applications have
been known to use this access pattern. Many of us have also seen database
administrators or developers initiating a connection, then leaving the client
running with the connection open as they leave for the day (or for their
vacation). If they happened to start a transaction before going away, their
session will be left idle in transaction.

If you remember from our short description of MVCC, PostgreSQL
determines the visibility of tuples by using transaction IDs, and this is how
the Isolation property of ACID is guaranteed for compliance. If you
remember, we examined ACID violations of the Isolation property in section
"Homemade distributed systems" of Chapter 5.

Locks in PostgreSQL

The concept of locks in Postgres is not complicated: From a database user
perspective, locks are obtained on the table level (e.g. ACCESS SHARE) or the
row level (e.g. FOR UPDATE). These then either permit or prevent access to
other transactions that are trying to "use" (i.e. obtain a lock on) the same
thing. This is determined by way of lock types being conflicting with each
other — so if someone attempts to obtain an ACCESS EXCLUSIVE lock on a
table, that will conflict with all other types of locks so nobody can obtain a
SHARE lock on the same table.

Now let’s explore a scenario where a client leaves a session idle in
transaction:

 Client A

 BEGIN;

 SELECT * FROM mytable;

 (...)

The SELECT statement completes, and returns results (…). Client A leaves the
connection and transaction open.

Now another client connects, and attempts to add a column to mytable. The
table is not in use at this point, right? So the client should be able to run this
DDL command.

 Client A | Client B

------------------------+-----------------------

 BEGIN; |

 SELECT * FROM mytable; |

 (...) |

 | ALTER TABLE mytable

 | ADD description text;

 | *hangs*

Client B’s request waits forever (or at least, until Client A’s transaction ends).
Client A’s transaction has taken the most innocuous of locks, an ACCESS
SHARE lock, to read the table. Even though this is a lock mode that can’t even
block others from reading or writing to the table, it conflicts with the ACCESS
EXCLUSIVE lock that the ALTER TABLE ADD (COLUMN) statement requires.

What’s worse, while Client B waits its turn to obtain the lock it needs on
mytable, any other transaction or query that needs to access mytable will be
blocked because they have to queue behind it!

 Client A | Client B | Client C

------------------------+-----------------------+------------------------

 BEGIN; | |

 SELECT * FROM mytable; | |

 (...) | |

 | ALTER TABLE mytable |

 | ADD description text; |

 | *hangs* |

 | | SELECT 1 FROM mytable;

 | | *hangs*

However, Client A simply ending the first transaction will unblock
everything:

 Client A | Client B | Client C

------------------------+-----------------------+------------------------

 BEGIN; | |

 SELECT * FROM mytable; | |

 (...) | |

 | ALTER TABLE mytable |

 | ADD description text; |

 | |

 | | SELECT 1 FROM mytable;

 | |

 END; | |

 COMMIT | |

 | ALTER TABLE |

 | | ?column?

 | | ----------

 | | (0 rows)

Note

END is a PostgreSQL extension to the SQL language that is equivalent to
COMMIT.

Let’s take a brief moment to talk about VACUUM. MVCC gives you
amazing write and rollback performance but it requires maintenance
operations. Namely, VACUUM is the operation that removes "dead" tuples
(old row versions) that are no longer visible by any transaction and are
therefore not needed. PostgreSQL runs this automatically to perform
maintenance on the database from time to time, and this is what we call
autovacuum. As with everything else, it needs to use locks, and it waits to
obtain them.

Worryingly, idle in transaction connections can prevent (auto)vacuum
from running if they have modified any data or are using an isolation level
such as REPEATABLE READ or SERIALIZABLE. Vacuum will also not be able to
remove recently dead rows that must remain visible by this open transaction.
Forgoing vacuum for some time can bring on bloat (dead rows left over
inside the table) which has serious implications for performance and disk
usage.

Warning

Worse, autovacuum also does other things such as "freezing" old table rows.
If autovacuum is prevented from running over an extended period, this can
cause transaction ID wraparound, a related failure mode that we’ll discuss in
the following section.

One way to prevent connections from staying idle in transaction is designing
your application properly (ha!) — another is setting a value for the
configuration parameter idle_in_transaction_session_timeout. This will
prevent sessions from sticking around in idle in transaction state for

longer than the specified number of milliseconds, thereby preventing sessions
from holding on to locks or blocking vacuum for unreasonable amounts of
time. However, there is a tradeoff here: if your application needs to run
processing for some time after initiating the transaction before writing back
and/or closing it, the timeout needs to be sufficient to accommodate that.
Moreover, your application needs to be able to tolerate these types of session
timeout disconnections.

For more information on this, please read the PostgreSQL documentation:
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-
IDLE-IN-TRANSACTION-SESSION-TIMEOUT

6.5.2 Long-running queries in general

Many of the same points still hold true for long-running queries. Remember,
even if you haven’t explicitly started a transaction, each query will run within
its own implicit transaction.

Each of these transactions will obtain a snapshot of the database, as
previously mentioned, and hold it for as long as it is executing its statement.
The same will be true for as long as a cursor is open.

Tip

When we’re talking about queries with long execution times, we mean
actively running ones, not queries that are slow to complete because, for
example, they are blocked. now() - query_start under pg_stat_activity
is the duration that you’ll be looking for.

Autovacuum will skip cleanup of dead tuples if a transaction is holding a
snapshot obtained before those tuples were changed or deleted. Additionally,
if a query needs to obtain a lock that conflicts with it, autovacuum will
voluntarily give up the lock and stop what it’s doing. Obviously, if the query
goes on for very long, autovacuum won’t get the chance to run. All of these,
again, can lead to problems with bloat and XID wraparound.

Lastly, long queries can cause query conflicts in a replication scenario. For
instance, when heavy updates on the primary are changing data that is

simultaneously being selected on the standby server, this can lead to the
queries on the standby being cancelled. The query cancellation is due to the
conflict caused by needing to apply WAL that will affect the data being
selected.

Long-running transactions can also cause replication lag when synchronous
or logical replication is in use, as changes are only replicated after they’ve
been committed. This can be mitigated by using asynchronous streaming
replication or enabling logical replication streaming of large in-progress
transactions, respectively. You can do the former by setting
synchronous_standby_names to an empty string in postgresql.conf, and
the latter by enabling the streaming parameter when setting up your logical
replication connection with CREATE SUBSCRIPTION.

It is relatively safe (for the database, perhaps not for the client application) to
SELECT pg_cancel_backend(<PID>); to stop long-running queries.
However, as we’ve already seen, terminating backends — e.g. by killing
(SIGKILL) the PID of the backend — is very different and much more
dangerous to use, as it may bring the entire server instance down into
recovery mode when PostgreSQL detects that one of its backends has been
killed. pg_terminate_backend(<PID>) is safer to use, but it is much less
graceful than pg_cancel_backend() as it aborts the transaction and
disconnects the user forcibly, which may cause problems in the application.

6.6 High transaction rate

Having the ability to process transactions at a high rate is generally desirable,
but is having a sustained high transaction rate actually good for your
PostgreSQL database?

6.6.1 XID wraparound

As we mentioned previously, PostgreSQL assigns an identifier (XID) to each
transaction and those are used as the basis for the MVCC mechanism. We
just write into the main data area (or heap) of the table and each tuple we
write has an xmin (the XID that inserted it) and an xmax (if deleted, the XID
that deleted it). Remember — updates in PostgreSQL are an insert and a

delete operation.

Tip

You can find out the current transaction ID via:

SELECT txid_current();

XIDs are unsigned 32-bit integers, so they have a range of approximately 4.3
billion values.

You should think of this as a circular space, with a visibility horizon: from
the perspective of your transaction, there have been ~2.15 B XIDs in the past,
and there are ~2.15 B XIDs in the future, like this:

Figure 6.3 Depiction of PostgreSQL’s transaction IDs as a circular space

Imagine that we just zoomed out from Figure 6.2, and what appeared like a
straight line was in reality a segment of a circle. When we next move to
transaction 1001, there will still be the same number of billions of XIDs
behind and ahead of it — as if txid_current() is the pointer on the Wheel of
Fortune!

In the preceding section, we referred to the XID wraparound failure mode.
This happens when you try to read a very old tuple that is more than ~2.15
billion XIDs in the past from your perspective. By looking at Figure 6.3 we
can easily understand that such an XID will be in the space of future XIDs
from your viewpoint, and should be invisible! This precipitates an impossible
situation where we don’t know if the tuple is from the past or the future, and
can cause data inconsistency or loss. PostgreSQL tries to prevent XID
wraparound at all costs, by running a non-interruptible anti-wraparound
autovacuum that tries to rectify the situation. This can slow your system
down to a crawl and is unavoidable once it starts. But how do we get to that
point, and how do we prevent this from happening?

We prevent XID wraparound through a trick called freezing. VACUUM will
go through each table, and mark very old tuples that are known to definitively
be in the past with a "frozen" flag. This marks them as being "very old" and
outside our current space of XIDs, therefore making the frozen tuples safe in
terms of their xmin. In a sense, it’s reclaiming previously used XIDs from
tuples.

The only thing we need to care about now is ensuring that this VACUUM
FREEZE operation happens before XID wraparound occurs, and this is what
the special anti-wraparound autovacuum is doing, albeit in a rushed manner.
It kicks in when PostgreSQL believes you are close to running out of XIDs
(this is configurable via autovacuum_freeze_max_age). As we hinted in the
previous section, sessions in idle in transaction state can hold back the
XID horizon and cause freezing of old rows to be deferred.

6.6.2 Burning through lots of XIDs

It’s common for users and developers to take advantage of PostgreSQL’s

superior INSERT/UPDATE speed and just throw tons of data into the database
with little performance consequence. Each write "uses" an XID, and it’s
common for heavy OLTP workloads to burn through 2 billion transactions in
a short time. I have witnessed a database that went through this amount in the
space of a week! This volume of activity makes it dangerously likely that our
transaction burn rate will outrun autovacuum (and consequently automatic
freezing), pushing us towards XID wraparound error.

So, with regard to achieving impressive transaction rates: just because you
can, doesn’t mean you should.

What can you do when you find yourself having a high XID burn rate?

First, you should examine if batching can help. Does your application really
need to commit everything atomically? Consider the simple fact that
instituting a transaction commit batch of size 1000 will bring your application
down to about 1/1000th the previous XID burn rate, solving your transaction
rate issue pretty much immediately. Your application developers can also try
to reorganize all those incoming rows into more efficient structures that will
store the results of multiple operations.

Another thing you can try is to increase the effectiveness of autovacuum by
tuning the relevant configuration parameters to make it more aggressive. This
will consequently make tuple freezing more efficient.

Check out how to tune freezing in the PostgreSQL Documentation at:
https://www.postgresql.org/docs/current/routine-vacuuming.html

A bit of architectural advice that is good to remember is that you don’t want
to be storing too much data (that you may never use) inside your database.
Many organizations tend to store every bit of data that comes across their
systems in case it ever becomes useful in the future for analysis purposes or
otherwise. Check with stakeholders and inform them of the risks and costs of
such a course of action, and eliminate data nobody will ever look at from
your ingestion flow.

An alternative for dealing with data that is useful but of a very high volume is
to crunch or resample it right away and only store summaries, averages or

trends — if that’s what you’re going to need in the future anyway.

6.7 Turning off autovacuum/autoanalyze

Because of the design choice to use MVCC in Postgres, VACUUM is a
necessary evil. At least, some people see it as evil because it appears to be a
background process that eats resources and does nothing for their workload.

As a result, when folks who think this way find out that there’s something
called autovacuum running VACUUMs all the time inside their database, their
response is to try to find a way to disable this pesky daemon. After all, it
seems to be consuming system resources, often at the most inopportune times
for their daily workload.

They often feel vindicated when turning it off results in performance gains,
and there is a noticeable difference for their developers and end users to see.

Well, at least for a while.

To see why this is a recipe for disaster, let’s first examine what VACUUM
does.

We already know that it cleans out dead tuples from our database. You can
think of this as garbage collection that frees up space inside a table’s data
files because those tuples are not removed from the table until a VACUUM is
run on it. This cleared-out space can then be re-used by Postgres. Next,
VACUUM does the same for tables' indexes by performing the
corresponding cleanup. We also saw that it can freeze old table rows to
prevent XID wraparound. Finally, with the command VACUUM ANALYZE, we
run an ANALYZE operation after the vacuum to collect useful statistics on the
table’s content which helps the query planner choose suitable plans by
considering the nature of data in the table.

Now let’s see specifically how autovacuum operates. It’s all in the name
really — it pops up automatically from time to time to see if tables need
vacuuming or analyzing, and then performs VACUUM and/or ANALYZE on
those tables. It’s a way to worry less about all of the things in the previous

paragraph, as it takes care of bloat prevention, query plan optimization, and
XID wraparound safety.

If it isn’t already obvious, these are important functions. So important, that
even when you choose to disable autovacuum in PostgreSQL’s configuration,
it still keeps an eye out for XID exhaustion situations, ready to intervene. The
bottom line is that, the same as backups (more on that in a later chapter),
maintenance operations should be automatic and not rely on manual
intervention.

Any short-term performance gain from disabling autovacuum will soon be
outweighed by the detrimental effect of bloat accumulation. From a
performance aspect, having bloat simply means going through additional data
on disk that is junk when scanning tables and indexes, slowing down queries
that would otherwise perform better.

Letting bloat get out of hand can result in your tables ballooning in terms of
size on disk, and this space is then non-reclaimable by simple VACUUM,
which can’t hand the space back to the operating system but just mark it as
free inside the file for Postgres to use. To free up the disk space, you would
then need to run a different command called VACUUM FULL, which is slow,
requires even more disk space, and is highly disruptive to database operation,
as it totally locks out any use of that table. This means that you should never
call VACUUM FULL on a table that’s in use unless you fully understand the
implications.

Also, by overlooking the importance of gathering optimizer statistics you can
run the risk of reduced query performance. The optimizer needs to know data
characteristics such as cardinality, number of distinct values, and other
histograms, in order to choose the best plan for executing a query.

Much of the same holds true for just leaving autovacuum with its very
conservative defaults, which will be ineffective for production workloads — 
remember how we saw that PostgreSQL out-of-the-box defaults are too
conservative for real-world usage in the first section of this chapter. Simply
reducing autovacuum’s potency by turning down those parameters will also
have the same detrimental effects on bloat and statistics gathering.

The recommendation here, counter-intuitively, is to increase autovacuum’s
effectiveness the more write-intensive your workload becomes instead of
decreasing it to balance out resource consumption. You should bite the bullet
and accept that a portion of system resources will be dedicated to this MVCC
maintenance operation that keeps your database running properly under the
demanding conditions that you are imposing on it. For the time being — 
meaning until PostgreSQL gets additional storage backends — you can’t
avoid VACUUM.

If your server can’t cope with both your workload and the autovacuum that
this requires, you may need to look into scaling up your system, scaling down
your workload by identifying costly queries, or adjusting your database
architecture (e.g. by splitting the data, using replication, etc).

Tip

Keep in mind that you can override autovacuum settings on individual tables
if the defaults are not suitable for a subset of your tables.

Autovacuum configuration parameters, including how to tune it up or down
using cost-based delays and sleep time, are documented here:
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html

6.8 Not using EXPLAIN (ANALYZE)

You’d be surprised to find out how few people EXPLAIN and EXPLAIN
ANALYZE their queries to find out how they get executed by the database. It
might be because of the weird output format, that many find hard to read at
first, or because they don’t know what a Recheck Cond on a Bitmap Heap
Scan is and where to look it up. However, judging from other DBMSs,
PostgreSQL’s query plans are very detailed and well-documented by
comparison.

It is surprising, because in most cases where the complaint is "my query is
too slow", EXPLAIN can help you figure out why it is taking so long to
execute.

The planner/optimizer generates a multitude of possible execution plans for
the query, costs them according to its internal logic, previously gathered
statistics, and configuration, and finally chooses the one with the lowest cost
because it will have the best chance of being the fastest to run. This is why, in
the previous section, we saw how important it is to allow
autovacuum/autoanalyze to gather the aforementioned planner statistics.

EXPLAIN ANALYZE goes a step further than showing you the chosen query
plan, and tells you the actual timings of how long each component of the
statement took to run.

Warning

EXPLAIN ANALYZE actually runs the SQL statement, as opposed to simple
EXPLAIN which only plans it. This means that if your statement changes data,
EXPLAIN ANALYZE <query>; will apply those changes! Consider putting
EXPLAIN ANALYZE between BEGIN and ROLLBACK commands, but be aware that
your ROLLBACK may incur the need for vacuuming (e.g. if you insert a lot of
rows and then roll back).

The auto_explain extension allows you to automatically include execution
plans for slow-running queries in the PostgreSQL log. However, be careful:
running EXPLAIN on lots of queries can impact performance.

There are numerous examples of the use of EXPLAIN (ANALYZE) throughout
this book, helping to demystify query performance and execution logic, to
further aid us in understanding why a particular course of action is a mistake.
There’s also another example in the section after next "Having no indexes"!

Supplementing the official documentation, there are numerous tutorials
available online that go over the process of reading and understanding
EXPLAIN output, as well as visualizers that organize query nodes and
concepts in a way that some will find more user-friendly.

6.9 Locking explicitly

The lock modes that PostgreSQL provides can be used by applications to

control concurrent access to table data where MVCC’s default behavior is not
sufficient. By locking objects explicitly, applications can ensure data
consistency, that actions won’t be executed out of order, or that application-
side objects won’t get out of sync with each other.

However, locking explicitly is a bad paradigm, and should generally be
avoided. These explicit locks, also known as heavyweight locks, can block
statements' read and write access completely, leading to waits.

As we saw in the example from the section "Idle in transaction", the situation
where we inadvertently locked access to a table could have proved disastrous
for application performance. The statement there was waiting indefinitely for
the lock it needed to be released and other statements were getting queued
behind it, also waiting.

It’s easy to look at part of the issue and focus on, let’s say, synchronization of
objects in the application, and explicit locks may seem like the ideal solution.
In reality, it’s more likely that eventually sessions will block other sessions
unless your application is exquisitely crafted — hint: it isn’t. The likely result
will be longer run times for queries and increased latency or waits visible to
interactive users of the application.

To be on the safe side, avoid using this kind of locking in your code. The
alternative is to make clients try to obtain access to an object, and if that isn’t
available, notify them immediately with an error so they can retry later. This
involves making the application tolerant, so it can be allowed to fail and
retry.

Luckily, there’s a PostgreSQL isolation level that does exactly that. The
SERIALIZABLE isolation level implements Serializable Snapshot Isolation
(SSI), which detects and prevents anti-dependency cycles (when a transaction
writes a new version of a row while an older version is being observed by
another transaction).

Anti-dependency cycle (rw-dependency)

Transaction T1 reads three rows from a table WHERE active = true,
transaction T2 updates one of these rows with SET active = false, then

transaction T1 tries to calculate an average value WHERE active = true,
which only averages across the two rows. This is also known as write skew
on predicate read or G2 serialization anomaly.

SERIALIZABLE is the strictest transaction isolation level and when a
serialization failure is detected, it will throw errors such as ERROR: could
not serialize access due to read/write dependencies among

transactions. Due to the overhead of anomaly detection, it may allow for
slightly reduced concurrency but the benefit is that there is nothing that can
block queries, and explicit locks are not required. For some application types,
serializable will be the best choice for achieving high performance.

Tip

An example of how to use SERIALIZABLE can be found in the PostgreSQL
Documentation here: https://www.postgresql.org/docs/current/transaction-
iso.html#XACT-SERIALIZABLE

Alternatively, you may want to handle synchronization inside your
application. In this case, you can use advisory locks, a feature provided by
PostgreSQL for developers to define locks that hold a meaning for the
application but are not enforced by the DBMS. More information on advisory
locks can be found here: https://www.postgresql.org/docs/current/explicit-
locking.html#ADVISORY-LOCKS

6.10 Having no indexes

This one is kind of self-explanatory I would hope, and not 100% specific to
PostgreSQL. Indexes can make a very significant difference in query
performance in conjunction with predicates by offering fast scan times. The
different index types on offer (B-tree, Hash, GIN, BRIN, GiST, SP-GiST and
Bloom filter) cover many varied use cases, and yet we always see slow
queries that could have been made blazing fast through the use of an index.

However, coming from other DBMSs, you may assume that an index will
automatically be created under some conditions. In a recent real-world case,
developers had trusted that because they were querying a column that was

using a foreign key, PostgreSQL would have created an index on the
referencing table.

Let’s see what that looked like, using two tables from our Frogge Emporium
database. Frogge has a table of invoices where the column customer
references the table customers. They have a query to find how many invoices
they have from a specific customer:

SELECT count(*)

FROM erp.invoices

JOIN erp.customers c

ON customer = c.id

WHERE first_name = 'Aiden'

AND last_name = 'Kowalski';

With SET max_parallel_workers_per_gather=0;, The EXPLAIN ANALYZE
output for this is:

 QUERY PLAN

--

 Aggregate (cost=6054.51..6054.52 rows=1 width=8) (actual

 time=28.057..28.060 rows=1 loops=1)

 -> Hash Join (cost=306.01..6054.46 rows=18 width=0) (actual

 time=2.681..28.053 rows=18 loops=1)

 Hash Cond: (invoices.customer = c.id)

 -> Seq Scan on invoices (cost=0.00..5092.00 rows=250000 width=8)

 (actual time=0.004..12.098 rows=250000 loops=1)

 -> Hash (cost=306.00..306.00 rows=1 width=8) (actual

 time=0.953..0.954 rows=1 loops=1)

 Buckets: 1024 Batches: 1 Memory Usage: 9kB

 -> Seq Scan on customers c (cost=0.00..306.00 rows=1

 width=8) (actual time=0.122..0.950 rows=1 loops=1)

 Filter: ((first_name = 'Aiden'::text) AND (last_name =

 'Kowalski'::text))

 Rows Removed by Filter: 13999

 Planning Time: 0.139 ms

 Execution Time: 28.083 ms

(11 rows)

We can see that even though we are querying on a foreign key that’s
referencing the primary key on the customers table and is therefore indexed
there, the Gather for our count() is performing a Seq Scan on table
invoices. PostgreSQL doesn’t create an index on the referencing table

automatically, so none is used. However, the query still manages to complete
in just 28 ms.

After CREATE INDEX ON erp.invoices(customer); we get this plan:

 QUERY PLAN

--

 Aggregate (cost=314.84..314.85 rows=1 width=8) (actual time=0.957..0.957

 rows=1 loops=1)

 -> Nested Loop (cost=0.29..314.79 rows=18 width=0) (actual

 time=0.121..0.954 rows=18 loops=1)

 -> Seq Scan on customers c (cost=0.00..306.00 rows=1 width=8)

 (actual time=0.107..0.938 rows=1 loops=1)

 Filter: ((first_name = 'Aiden'::text) AND (last_name =

 'Kowalski'::text))

 Rows Removed by Filter: 13999

 -> Index Only Scan using invoices_customer_idx on invoices

 (cost=0.29..8.61 rows=18 width=8) (actual time=0.012..0.014 rows=18

 loops=1)

 Index Cond: (customer = c.id)

 Heap Fetches: 0

 Planning Time: 1.511 ms

 Execution Time: 1.338 ms

(10 rows)

This turned the invoices table access into an Index Only Scan that only
takes 1.3ms in total! Big deal? We were also in the milliseconds before.

However, it made our query run 20 times faster. Imagine that this kind of
query gets executed thousands of times an hour, or a minute. In this case,
milliseconds that you would usually ignore can make a world of difference in
total system throughput.

A few sections back, we talked about the importance of taking advantage of
the EXPLAIN command. Here we tried it to see if an index was being used, and
if the index we created helped things, by comparing execution plans before
and after indexing.

If you see that you get full table scan accesses, consider the nature of that
column and the WHERE clause you’re using, and it’s more than likely that you
will find an index type that will speed up your SQL statement.

6.11 Having unused indexes

At the other end of the scale, just mindlessly creating indexes on every
column can seriously undermine the performance of INSERT, UPDATE and
DELETE operations. Also you can end up wasting a lot of disk space on
indexes that you will never need.

In one memorable case, a table had an index on each table column, an index
grouping all columns together, and also indexes for every combination of
columns! Needless to say, almost none of them served a purpose.

There’s no point in repeating the EXPLAIN song and dance here — try it and
see for yourself how much slower you can make writing to a large table by
adding more indexes to its columns.

As we said in the previous section, when you have very heavy query traffic
where you update a table all the time, just shaving tenths or hundreds of a
millisecond off of each UPDATE will make for a significant throughput
improvement.

Finally, an index will only be needed when you have a WHERE clause, and
even then, only for time-critical queries. If you’re going to index something
that you query only once a day and it takes a couple of seconds, it may not be
worth the effort of maintaining this index. Additionally, when you’re
selecting a significant portion of the table, scanning an index may be slower
than actually going through the table sequentially. PostgreSQL knows this
and will elect to do a Seq Scan instead.

You can identify unused indexes and DROP them by examining the view
pg_stat_all_indexes to see which ones have idx_scan = 0. It means they
have never been used in an index scan, so there is no reason to keep them
around.

Tip

Use caution not to run index or constraint creation commands such as CREATE
INDEX ON invoices(customer); more than once. Without explicitly

specifying the index or constraint name, a duplicate index (with a unique,
system-generated name) will be created. Duplicate indexes waste database
space, slow down DML operations (INSERT, UPDATE, and DELETE), and
increase maintenance time (such as for the aforementioned autovacuum)
while providing no actual query performance benefit.

6.12 Removing indexes used elsewhere

Following the advice from the preceding section, you remove every index
you find with a zero idx_scan value. Naturally, you feel smug because you
applied some sound advice from a PostgreSQL book and as a result improved
the state of your database. A few minutes later, your phone rings
unexpectedly, and you pick up to find that Ashley from Accounting is livid.
Their reporting queries have slowed to a crawl, and they are demanding to
know what happened to the database.

How could this be possible? It turns out that Accounting is using a standby
node, connected via streaming replication, for their queries as a read replica.
If you had checked pg_stat_all_indexes on that node, you would have seen
that it showed quite a large number of index scans, meaning that the index
was heavily used for some queries. These kinds of statistics are instance-
specific and not for the entire cluster. And of course, as there’s physical
replication between the Postgres instances, when the index was dropped on
the primary, it also disappeared from the standby.

When you have standby nodes, always check to see that indexes are not
seeing use on any of those nodes before you decide to remove them.

6.13 Summary

PostgreSQL’s default configuration is very conservative and in most
cases will not be optimal for a real-world workload. This can mean that
you are leaving your system resources underutilized and leaving
potential performance gains on the table.
You can shoot yourself in the foot by calculating memory allocation
settings incorrectly. You need to take your workload into account,

including what types of queries you are running and how memory-
hungry they are along with what level of client concurrency you are
expecting.
Excessive concurrency can kill your performance rather than allow more
work to be performed in parallel because of the way Multi-Version
Concurrency Control (MVCC) works. You need to be aware of the risks
associated with opening too many sessions inside PostgreSQL, and also
the nature of your workload and the limitations of your particular
database host.
Connections that are mostly or entirely idle don’t come for free; they are
associated with computational overhead that may affect PostgreSQL’s,
and your operating system’s, performance in general. You should try to
avoid having connections around that don’t do much actual work. If you
can’t, you should use a connection pooler that’s aware of these
connection semantics, such as PgBouncer in Transaction Mode.
Idle in transaction sessions and sessions with long-running queries can
cause unexpected blocking of other queries, leading to application
delays or errors. They can also postpone or altogether block
autovacuum, and this can lead to performance degradation beacuse of
bloat, or more serious errors.
If you let your transaction rate get out of control, it can outrun the efforts
of autovacuum to prevent XID wraparound failure and bring down your
database. You can mitigate this by batching, reorganizing, and
summarizing data — or even skipping the ingestion of data you aren’t
likely to use again.
Autovacuum is essential for the correct operation of your database.
Lowering its effectiveness or disabling it altogether to save system
resources is a fallacy, because any performance gains will be undone in
time by bloat accumulation, inaccurate optimizer statistics, and forced
anti-wraparound prevention.
Where there’s evidence that a query is running slowly, checking its
EXPLAIN is a quick and accurate way to identify the reasons why and
help troubleshoot it.
Locking objects explicitly can lead to read/write blocking that can make
your application feel sluggish or broken. Where synchronization is
needed, try to use the SERIALIZABLE isolation level and make your
application able to retry actions.

Indexes can make or break your queries' performance, and PostgreSQL
has lots of index types. Examine your query plans and take advantage of
indexing to boost performance for your WHEREs. Sequential scans are bad
because they become linearly slower as the table grows.
Having indexes that you don’t need can slow down your table for
writing and consume valuable disk space. Identify those that aren’t in
use from pg_stat_all_indexes and remove them.
Be careful when dropping indexes that appear unused as this statistic is
for the local node only, and those indexes may be in use on another node
you are physically replicating to.

7 Administration bad practices
In this chapter

Letting disk usage get out of hand
Missing hints of danger by not looking at logs
Collecting and analyzing statistics
Upgrading is not optional

After all the exciting development and optimization topics we’ve discussed,
when the time comes to take the database into production, the comparatively
mundane task of administration may feel like a chore. However, how you
administer the database is an integral part of PostgreSQL’s robustness and
reliability. It determines the success of your Postgres deployment and can
make or break critical systems. We’ll now look at some mistakes Database
Administrators (DBAs) may make, either through lack of familiarity or
inexperience, when managing Postgres.

7.1 Not tracking disk usage

It seems hard to believe, yet it’s still one of the top issues faced by people
who support PostgreSQL installations. Inevitably one day, someone will
contact them requesting their help in solving the dreaded "No space left on
device" error. This section could have been named "Running out of disk
space", but instead what we want to emphasize here and now is that if you
aren’t tracking your disk space usage you are taking a huge risk.

Let’s take a step back and look at what happens when your PostgreSQL
deployment runs out of disk space. First off, which disk are we talking about?
The risks associated with space exhaustion in your operating system disk are
well known. Hopefully, your PostgreSQL data directory is on a different
drive or partition, and let’s assume that this is what’s run out of space.

You are likely to notice something similar to this:

ERROR: could not extend file "base/12609/16048": No space left on device

HINT: Check free disk space.

What happens when the harrowing error above appears?

It really depends on where you keep your data files and the Write-Ahead Log
and if they’re on the same disk volume or not. Just filling up your data disk is
not a fatal error in itself, but it can certainly prevent your application from
performing its usual database activities. However, if the disk where your
WAL resides runs out of space, journalling and committing data changes will
no longer be possible, and this can lead to PostgreSQL going into panic and
shutting down.

This is most undesirable, so people will try to prevent it at all costs.
Unfortunately, knee-jerk reactions may lead to missteps that can even
compound the error and make matters worse.

A lifeline many may reach for at this time is to delete some old data to free
up disk space. Unfortunately, because of PostgreSQL’s MVCC model, this
won’t yield immediate results or may even not work at all. Postgres needs to
write WAL for every change to the data, so you effectively need disk space in
order to delete data! If you have enough disk space to run DELETE or
TRUNCATE, the dead rows left behind will still require a VACUUM to reclaim the
space. However, even then the space won’t be returned to the OS but will just
be marked as free space within the table’s data files. VACUUM FULL, which can
relinquish the free space back to the OS, obtains an ACCESS EXCLUSIVE lock
on the table while rewriting it, making the table unusable during the
operation — this also qualifies as a Very Bad Thing.

Opting to resize the disk volume can also turn out to be the wrong move in
production, as many cloud providers and file systems need to pause all disk
operations until the volume expansion operation has been completed. This
may potentially cause unexpected downtime for your database. Also, be
aware that the resize operation may take a very long time, so you may be
better off restoring the database to a fresh server or cloud instance with more
disk space.

Another quick thought will be to look for logs to delete. This has led many an

inexperienced PostgreSQL user to one of the most common ways to shoot
themselves in the foot:

7.1.1 Deleting the Write-Ahead Log

In the days of yore, the PostgreSQL data directory contained directories
named pg_log, pg_clog, and pg_xlog. If you know that pg_log contains logs
that you want to delete, it’s easy to assume that you can also blow away those
"c"-logs and those "x"-logs as well. Unfortunately pg_clog was the directory
that contained the Commit Log, which keeps track of the state of all
transactions and is an integral part of the MVCC mechanism. pg_xlog was
the directory for the Write-Ahead Log and, by this point in the book, you
should already know how important the transaction log for the database is.
Effectively, removing those directories nuked the Postgres installation,
making it unusable instantly, and the only remaining choice would be to
rebuild the database cluster from a backup.

When the PostgreSQL project realized that this was starting to happen all too
often, pg_log was renamed to log to make it somewhat unambiguous,
pg_clog was renamed to pg_xact and pg_xlog was renamed to pg_wal, to
stop people thinking that these are "logs" that can be removed at will. Even
though these directories were intentionally renamed, still to this day people
manage to delete files from inside them, which is truly one of the biggest
mistakes you can make with a PostgreSQL installation.

Honestly, it seems that there’s just no way to stop people from deleting files
that appear useless to them because they don’t understand their function. You
could say that the only thing we can do is write books about these mistakes
and hope that one day these pages will get read!

7.1.2 What can eat up your disk space?

Moving on, let’s discuss what can consume your disk space gradually or
suddenly. Obviously, tables and indexes will grow over time as you add more
data to them, but this can be greatly exacerbated by bloat. If dead rows aren’t
removed promptly, this can cause table file size to balloon out of control, and
this disk space will be lost to the filesystem until it is reclaimed. Temporary

files, normally used only for the duration of an operation that doesn’t fit in
memory such as a large sort or hash join, can also persist on disk after an
improper Postgres shutdown. These temp files will then need to be manually
cleaned up.

We previously mentioned that the WAL is essential to the operation of the
database — however, you may be generating and accumulating too much of it
on disk. If your max_wal_size and wal_keep_size settings are not optimal,
this may lead Postgres to use up more disk space than is necessary. Also, if
there is replication lag or failure of a standby server using replication slots,
the WAL produced will accumulate locally until the standby server can
receive and consume this WAL. If this goes unnoticed (and this is more
common than you may think), it can exhaust all disk space where the WAL
directory resides. Finally, a failure of the archive_command will also lead to
keeping around on disk the WAL that is supposed to get archived until it can
get archived successfully.

7.1.3 What can you do?

As a mitigation strategy, you can keep your database and the WAL on
separate volumes (and of course keep a very close eye on disk usage on those
volumes). Moreover, tablespaces in PostgreSQL allow you to define the
storage locations for database objects, so you are effectively free to create
any table or index in any directory or volume on your filesystem. Besides the
obvious performance or cost-saving optimizations you can perform with the
flexibility to move things around to faster or cheaper disk storage, this allows
you greater control over the disk layout of your PostgreSQL installation.
Finally, you can add tablespaces at will, so you can use them temporarily
until you can resolve the situation with your main disk.

Arguably the most important monitoring task of a database administrator is to
ensure that the disk doesn’t become full ("You Had One Job"). Now that you
know how your Postgres deployment can find itself filling up its drive — and
what are bad reactions to this eventuality — you are hopefully more aware of
the importance of monitoring disk usage at all times. Use monitoring tools of
any type, set up alerts well ahead of the panic threshold, and regularly check
manually for anything that looks out of place before the alerts trigger.

Tip

Some filesystems suffer performance degradation as they fill up to capacity,
so it’s important to take action before your disk is almost full.

7.2 Logging to PGDATA

You may think that letting your database run out of disk space is quite a banal
error — but hey, if it wasn’t something that happens out there, it wouldn’t be
in this book. In case you do think that, here’s a less obvious and insidious
mistake.

By default, PostgreSQL writes its log files to the same filesystem as the
database itself (we call the data directory PGDATA for short). This may seem
like a convenient default choice, but it can also lead to trouble if logs start
growing unchecked. If they consume too much disk space, they can make the
database run out of room, as we saw in the previous section. If you monitor
your database properly you can catch this, but what if this happens faster than
the DBAs can react?

One could even argue that it can form an attack vector for a denial-of-service
(DoS) attack, through the intentional generation of excessive logging to
purposely fill up the disk.

Let us demonstrate, assuming that somehow the following code manages to
slip past application testing and QA. The developer who works for Frogge
Emporium has written a simple routine — with error checking, mind you — 
to calculate the total energy use from all branches for the previous day and
log it to the audit log. This uses a query that calculates the totals per branch
with window functions, then sums up everything and writes an entry to the
audit table. The code has a built-in retry capability.

Listing 7.1 Routine to log the sum of the previous day’s energy use

import psycopg

from datetime import date, timedelta as td

with psycopg.connect("dbname=frogge user=frogge") as conn:

 try:

 while True:

 with conn.cursor() as cur:

 try:

 # I have learned my lesson about using BETWEEN!

 cur.execute('''WITH

 yesterday AS (

 SELECT *

 FROM erp.energy_use

 WHERE reading_time >=

 date_trunc('d', now())

 - interval '1d'

 AND reading_time <

 date_trunc('d', now())),

 perbranch AS (

 SELECT first_value(reading) OVER w,

 last_value(reading) OVER w,

 row_number() OVER w

 FROM yesterday

 WINDOW w AS (

 PARTITION BY branch_id

 ORDER BY reading_time

 RANGE BETWEEN UNBOUNDED PRECEDING

 AND UNBOUNDED FOLLOWING))

 SELECT sum(last_value - first_value)

 FROM perbranch

 WHERE row_number=1''')

 total = cur.fetchone()[0]

 cur.execute('''INSERT INTO audit.audit_log

 (what, who, tstamp)

 VALUES (%s, %s, now())''',

 (f"Energy usage for {date.today() - td(days=1)}: "

 + f"{total} kWh", "Frogge Emporium"))

 conn.commit()

 break

 # If this goes wrong, something must be keeping the DB busy

 # and we can just retry

 except psycopg.errors.Error:

 conn.rollback()

 finally:

 conn.close()

So our Frogge developer runs this, and a few seconds later the database logs
are riddled with:

2024-09-20 12:26:19.606 BST [3055342] frogge@frogge ERROR: relation

 "erp.energy_use" does not exist at character 148

2024-09-20 12:26:19.606 BST [3055342] frogge@frogge STATEMENT: WITH

 yesterday AS (

 SELECT *

 FROM erp.energy_use

 WHERE reading_time >=

 date_trunc('d', now())

 - interval '1d'

 AND reading_time <

 date_trunc('d', now())),

 perbranch AS (

 SELECT first_value(reading) OVER w,

 last_value(reading) OVER w,

 row_number() OVER w

 FROM yesterday

 WINDOW w AS (

 PARTITION BY branch_id

 ORDER BY reading_time

 RANGE BETWEEN UNBOUNDED PRECEDING

 AND UNBOUNDED FOLLOWING))

 SELECT sum(last_value - first_value)

 FROM perbranch

 WHERE row_number=1

2024-09-20 12:26:19.606 BST [3055342] frogge@frogge ERROR: relation

 "erp.energy_use" does not exist at character 148

2024-09-20 12:26:19.606 BST [3055342] frogge@frogge STATEMENT: WITH

[...]

Ouch, it seems that instead of energy_usage, which is the proper table name,
they wrote energy_use. In this scenario, this causes the code to run
indefinitely, sending a query to the database that will always fail, because it
will always try the wrong table name. Every time this occurs, the error is
logged to the PostgreSQL log.

If we look at the timings, there are multiple entries during the same
millisecond with this same error, which makes our code a very efficient
endless loop. Unfortunately, this is particularly bad for us, as something that
writes to the log so fast can rapidly fill up the disk containing the logs. If the
process running this query is not interrupted, it will continue until disk space
is exhausted. So if you have your database on the same disk as your logs, this
can cause the database to crash, as we previously saw.

However unlikely the above scenario is, it underscores the importance of

keeping the logs on a separate filesystem or partition from the main database
storage. This way, you can mitigate the risk of log production eating up all
the disk space from your database. As additional safety measures, you should
also make sure that your installation implements log rotation and enforces
size limits for your logs. If you’re not using your operating system’s log
management and rotation facilities, you can manage the size of the logs by
adjusting parameters such as log_rotation_size, log_rotation_age and
log_truncate_on_rotation. Subsequently, you will need to find the balance
point between accumulating too many logs, that consume a lot of disk space
and are harder to scan through, and risking the deletion of logs with useful
error history and details that you may need later.

7.3 Ignoring the logs

Many believe that database logs are something you look at only if something
goes wrong. Wrong! PostgreSQL’s logs are not there just for post-mortem
analysis — they can inform you in near real-time of what’s taking place
inside your database. By ignoring them, you will be missing out on crucial
insights that may help you prevent serious issues down the line.

Here are a few things you may miss if you don’t examine your logs regularly:

7.3.1 Bad configuration

First off, you may catch configuration errors. For example, if you find
something like this in the logs it may mean that you aren’t currently
replicating to a standby or taking streaming backups properly:

2024-09-21 13:41:10.692 BST [3214372] replicator@[unknown] FATAL: number of

 requested standby connections exceeds max_wal_senders (currently 10)

This is probably not noticeable in the application, yet it’s something that
requires your immediate attention, in this case checking what actual
replication connections are coming into your DB server and the
max_wal_senders limit in the configuration.

Similarly, you may find errors in the log complaining of an insufficient

number of available connections:

2024-09-21 13:49:39.821 BST [3219655] frogge@frogge FATAL: remaining

 connection slots are reserved for roles with the SUPERUSER attribute

This points to the fact that either you’re not giving the application the number
of connections that it legitimately needs, or that potentially the application is
requesting an excessive number of connections. If you remember what we
talked about in Chapter 6, this may be the time to start investigating adding a
connection pooler, such as PgBouncer, to your setup.

It’s not just FATAL level errors that you need to worry about though, here are a
few cases that aren’t errors but may reveal underlying issues, such as memory
configuration problems. If you have log_temp_files enabled, you may
notice a lot of log entries that look like this:

2024-09-21 13:51:15.133 BST [3226458] frogge@frogge LOG: temporary file:

 path "base/pgsql_tmp/pgsql_tmp3226458.0", size 8437760

2024-09-21 13:51:15.133 BST [3226458] frogge@frogge STATEMENT: SELECT *

 FROM erp.payments WHERE tstamp >= date_trunc('y', now()) ORDER BY

 amount;

This may mean that your work_mem value is set too low, and the database is
having to resort to writing temporary files on disk in order to run your queries
that don’t fit in memory. As we know, this can severely affect performance
because of the sheer disparity in speed and latency between memory and
disk.

7.3.2 Performance issues

Slow-running queries are also something to keep an eye out for, as they may
point to inefficiencies causing performance problems such as badly written
SQL, missing indexes, or progressive issues such as gradual performance
degradation. Setting your log_min_duration_statement parameter to a
value like 100 milliseconds will allow you to log slow query executions
similar to this:

2024-09-21 14:17:41.763 BST [3232957] frogge@frogge STATEMENT: SELECT *

 FROM erp.payments WHERE tstamp >= date_trunc('y', now()) ORDER BY

 amount;

2024-09-21 14:17:41.764 BST [3232957] frogge@frogge LOG: duration:

 157.096 ms statement: SELECT * FROM erp.payments WHERE tstamp >=

 date_trunc('y', now()) ORDER BY amount;

As this query ran for 157 ms, it crossed our reporting threshold and was
subsequently captured in the log. We discussed extensively in the previous
chapter how long-running queries can seriously impact your deployment’s
performance and reliability.

Additionally, your workload may be causing issues to surface in the logs that
may assist you in troubleshooting your database and application’s
performance. For example, if you find evidence in the log that checkpoints
occur too frequently, this will indicate that Postgres is flushing data to disk
way too often, which will hurt your performance:

2024-09-21 14:20:27.920 BST [3260055] LOG: checkpoints are occurring too

 frequently (2 seconds apart)

2024-09-21 14:20:27.920 BST [3260055] HINT: Consider increasing the

 configuration parameter "max_wal_size".

2024-09-21 14:20:27.920 BST [3260055] LOG: checkpoint starting: wal

2024-09-21 14:20:27.963 BST [3260055] LOG: checkpoint complete: wrote 1359

 buffers (8.3%); 0 WAL file(s) added, 2 removed, 0 recycled; write=0.155

 s, sync=0.019 s, total=0.201 s; sync files=2, longest=0.019 s,

average=0.010 s; distance=33073 kB, estimate=37487 kB; lsn=11/8371F2D0,

redo lsn=11/81A37E70

In this case, the HINT is spot on, you should probably increase max_wal_size,
but you should also investigate the reason for the disk write spike elsewhere
in your system. As previously mentioned, other workload problems such as
an excessively high transaction rate can also be betrayed by the presence of
anti-wraparound VACUUM mentions in the log.

7.3.3 Locks

Locking issues captured in the log, such as deadlock errors, can also be a
telltale sign of current or impending performance problems. Instead of
waiting indefinitely, Postgres will terminate one of the two conflicting
queries to break the deadlock. You’ll then spot something like this in the log
file:

2024-09-21 14:40:24.541 BST [3279275] frogge@frogge ERROR: deadlock

 detected

2024-09-21 14:40:24.541 BST [3279275] frogge@frogge DETAIL: Process 3279275

 waits for ShareLock on transaction 3810; blocked by process 3279214.

Process 3279214 waits for ShareLock on transaction 3811; blocked by process

 3279275.

Process 3279275: UPDATE audit.audit_log SET tstamp=now() WHERE id=99925;

Process 3279214: UPDATE audit.audit_log SET tstamp=now() WHERE id=500002;

2024-09-21 14:40:24.541 BST [3279275] frogge@frogge HINT: See server log

 for query details.

2024-09-21 14:40:24.541 BST [3279275] frogge@frogge CONTEXT: while updating

 tuple (1868,57) in relation "audit_log"

2024-09-21 14:40:24.541 BST [3279275] frogge@frogge STATEMENT: UPDATE

 audit.audit_log SET tstamp=now() WHERE id=99925;

2024-09-21 14:40:24.747 BST [3279214] frogge@frogge LOG: duration:

 20217.150 ms statement: UPDATE audit.audit_log SET tstamp=now() WHERE

 id=500002;

As no "magic bullet" PostgreSQL configuration parameter can stop
deadlocks, what you can do is check your application logic to find where
deadlocks are possible, so that you can potentially prevent them from
occurring.

7.3.4 Corruption

One of the more serious consequences of ignoring your logs can impact your
data integrity — Mentions of errors such as the one below may reveal
filesystem or even hardware-related problems that may initially pass
unnoticed in the application:

2024-09-21 14:45:11.172 BST [3281235] ERROR: could not read block 8185 in

 file "base/16384/2613": read only 0 of 8192 bytes

2024-09-21 14:45:11.172 BST [3281235] CONTEXT: while reading block 8185 of

 relation base/16384/2613

2024-09-21 14:45:11.172 BST [3281235] STATEMENT: SELECT * FROM

 audit.audit_log WHERE tstamp > '2024-09-21';

2024-09-21 14:45:11.173 BST [3281235] LOG: invalid page in block 8185 of

 relation base/16384/2613

2024-09-21 14:45:11.173 BST [3281235] HINT: This could be a corruption

 issue caused by hardware problems or a software bug. Check for hardware

 issues and consider running pg_checksums or other diagnostic tools.

In this case, the log may have revealed the early signs of data corruption.
This can give you a heads-up which will allow you to address the issue

before it can escalate into a major data loss incident.

7.3.5 Security

Scanning the logs can help you catch security incidents too: The appearance
of repeated failed authentication attempts may indicate brute-force login
attempts:

2024-09-21 14:49:34.300 BST [3306179] frogge@frogge FATAL: password

 authentication failed for user "frogge"

2024-09-21 14:49:34.300 BST [3306179] frogge@frogge DETAIL: Connection

 matched file "/etc/postgresql/17/main/pg_hba.conf" line 123: "local

 all all scram-sha-256"

Moreover, things such as irregular login patterns or suspicious queries, such
as SQL injection attempts or unusual interest in tables that hold sensitive
data, can point to an attempted or in-progress security breach.

As the volume of logging that can be output by a database in a production
environment can be very large, in some cases it’s simply not practical to
review everything manually. A tool that can help out with this is a log
analyzer such as pgBadger, which can summarize the data for specific
periods and create nice HTML-formatted reports for us. It can capture the
things we previously mentioned as well as report on resource usage, and you
can configure specific thresholds or patterns that will trigger pgBadger to
alert you.

Note

You can find pgBadger at: https://github.com/darold/pgbadger

Even without such a specialized tool, you can still perform due diligence and
scan your log files with blazing-fast UNIX utilities such as grep, for example
by writing something like this which scours the log for lines denoting ERROR
or FATAL error conditions:

grep -E 'ERROR|FATAL' /var/log/postgresql/postgresql-17-main.log

To sum up, it is essential to actively monitor PostgreSQL logs to have a full

up-to-date picture of your DB instance’s health when it comes to
configuration, performance, data integrity and security, and dealing with all
other sorts of unexpected events.

7.4 Not monitoring the database

One would assume that any competent person or team in charge of a
PostgreSQL database will have a monitoring setup. However, it has been
shown time and again that this cannot be stated enough, so here we go:

If you don’t monitor your database appropriately, things WILL go wrong,
and even worse, you will get no advance warning or clue that things have
gone wrong. In a database that’s used in a production environment, this
should be simply unthinkable because of the risk to operations that it entails,
yet you can still come across databases where basic monitoring tasks have
been overlooked.

If monitoring is neglected, you may not notice that your queries are slowing
down and identify and resolve the performance bottlenecks that are causing
this. You need to be immediately informed about usage spikes, as these can
cause slowdowns that may impact user experience and subsequently lead to
reputational damage.

Similarly, you should also track PostgreSQL’s resource utilization because
inefficiencies or, simply, increasing loads can lead to operating near or at the
limit. This again brings the risk of degraded performance or even of your
database becoming unresponsive.

Monitoring is also about detecting unusual activity, such as excessive
resource usage either inadvertently or purposefully, and other things
mentioned in the previous section "Ignoring the logs" that can be early
warnings of security threats or malicious activity.

Finally, monitoring can alert you to the need to perform maintenance tasks
such as VACUUM and ANALYZE, or can highlight that your current autovacuum
settings are inadequate.

Let’s talk about which things you should track to ensure that your installation
is adequately monitored. PostgreSQL itself offers a wealth of information,
but you need to know where to look. Most monitoring tools, even if they
don’t come with PostgreSQL monitoring configured out of the box, will
allow you to define metrics, checks and dashboards, either through
customization or via plugins. Good things to track are:

(Naturally) disk and temporary file usage
Table and index-related metrics from pg_stat_user_tables and
pg_stat_user_indexes

Number and total size of WAL files, from pg_stat_wal and with
pg_ls_waldir()

Connections, running queries, their duration and whether they are
blocked (pg_stat_activity)
Replication status, with pg_stat_replication and relevant WAL-
related functions
Database transaction age, from pg_stat_database
Backup status

More involved things that you can monitor are:

The detailed query statistics collected by the extension
pg_stat_statements

Buffer, checkpointer and background writer statistics
Locks and waits in your server
Lower-level I/O statistics such as those provided by the
pg_statio_*_tables and pg_stat_io views (available since Postgres
16)

Some general-purpose open-source monitoring tools that people use are:

RRDtool and Cacti
Nagios/Icinga
Munin Monitoring
Zabbix
Percona Monitoring and Management (PMM)
Prometheus for more cloud-native settings
PGWatch

even pgAdmin for real-time viewing

These are all easy to find with your preferred search engine. There are also
proprietary solutions like EDB’s Postgres Enterprise Manager (PEM) and
SaaS offerings from DataDog and SolarWinds.

PostgreSQL’s built-in pg_monitor role has access to most if not all important
metrics. Some tools and platforms may require access to more restricted
things, such as everything that’s in pg_stat_activity. Before granting
access, you should weigh the benefits of monitoring against the interests of
your system’s security.

From dealing with performance problems and preventing resource starvation
to checking for backup failures and security intrusions, it is clear that
monitoring is all about effectively managing the risk to your database.
Murphy’s Law ("Anything that can go wrong will go wrong") and the culture
of monitoring needs to be embedded in you, your team and your
organization. Don’t wait until something goes very wrong to start monitoring
for that eventuality, because it may be too late.

7.5 No tracking of statistics over time

Database monitoring isn’t only about notifying you of current problems to
fix. Don’t get me wrong, that’s fine, but it can only tell you so much about
your database’s overall "look" over time, unless you tend to keep the data
around and create reports about long periods. Most monitoring tools are
focused on displaying the current state and alerting, and aren’t optimized for
long-term reporting that can let you "zoom out" and give you access to the
bigger picture of how your database is performing in the grand scheme of
things.

If you don’t keep tabs on your PostgreSQL statistics, you may miss out on
insights that can help you prepare for your database’s future growth. Having
a view of performance trends, usage patterns and other metrics over time can
help you perform analyses and projections to make your capacity planning
and scaling decisions easier and more informed.

For example, let’s say that Frogge Emporium’s customer base keeps steadily
expanding. Without access to historical data about how the system has
responded to this gradual change, it may be hard for them to predict database
architecture changes or infrastructure changes that may be necessary to deal
with this growth.

You may find a monitoring tool that allows you to track important metrics
over time, but keeping around a lot of data may bring about massive storage
requirements where the tool resides. In the case of proprietary tools and SaaS
platforms, there are almost certainly cost factors associated with tracking
many systems and accumulating lots of data from them for a long time. You
may also be a fan of simplicity and use custom scripts and standard utilities
for monitoring, instead of complicated tools with features you may not need.

With these in mind, I developed an extension called pg_statviz. It can take
snapshots of important PostgreSQL cumulative and dynamic statistics so you
can track their evolution over time, perform analyses and produce
visualizations to aid your understanding of your server’s workload. The key
benefit of the extension is that it’s very lightweight and does not require a
module to be loaded in shared_preload_libraries, which means that
installation doesn’t even require a server restart. Secondly, it enables you to
perform this analysis without the overhead of external tools or storage such
as Prometheus, Logstash or Elasticsearch, or intrusive agents, such as those
employed by a certain Dog of Data and others.

You can set up any job scheduler to take these periodic snapshots. With a
reasonable snapshot interval of 1 minute (which is the shortest one offered by
cron), the amount of data generated is very little, so why not keep it inside
the database itself? This is exactly what pg_statviz does, by storing the
timestamped snapshots in tables under the pgstatviz schema. It currently
collects statistics on the background writer, checkpointer, cache hit ratio,
connection count, I/O, number of tuples read/written, locks, wait events,
WAL generation, transactions, configuration and others. By implementing
resampling, it enables unlimited data analysis by allowing you to
downsample thousands, potentially millions of snapshots down to an
arbitrary number of plot points (100 by default).

The accompanying visualization utility it comes with reads from these tables

and can produce graphs (output to disk as .png images) to let you analyze
this time series data at a glance:

Figure 7.1 pg_statviz locks analysis output: This visualization displays the mean number and type
of locks in the database, with snapshots taken every minute over a period of several months in
2024.

You can download the pg_statviz extension from the PostgreSQL
community repositories by installing the package pg_statviz_extension for
Red Hat-based systems or postgresql-statviz for Debian-based systems.
Alternatively, you can install it from PGXN (the PostgreSQL Extension
Network). Installing it manually from source is also an option, as it requires
no compilation.

You can enable the extension in the desired database by running (as a
superuser):

CREATE EXTENSION pg_statviz;

As soon as the extension has been enabled, users with the appropriate
privileges can immediately start taking snapshots using:

SELECT pgstatviz.snapshot();

NOTICE: created pg_statviz snapshot

 snapshot

 2024-06-27 11:04:58.055453+00

(1 row)

As mentioned previously, taking regularly scheduled snapshots is
recommended and can be done with any OS or database scheduling tool,
including pg_cron.

The visualization utility can be installed from the PostgreSQL community
repos as the package pg_statviz for Red Hat-based systems or pg-statviz
for Debian-based systems. It can also be downloaded from PyPI (the Python
Package Index) as follows:

pip install pg_statviz

Its usage is as simple as:

pg_statviz buf --host froggeserver -d frogge -U frogge -D 2024-06-24T23:00 2024-06-26

This will connect to host froggeserver's frogge database as the user frogge
and generate a visualization for the buffer statistics spanning from 23:00 on
2024-06-24 to 00:00 on 2024-06-26.

Note

The source code and documentation can be found at:
https://github.com/vyruss/pg_statviz

7.6 Not upgrading Postgres

Which PostgreSQL version are YOU on? PostgreSQL’s development spans
over three decades and boasts both minor and major releases. Minor releases
happen roughly quarterly, and they are the last part of your version number,
i.e. 16.4. They fix bugs, security, and data corruption issues. They never add
features or change the internal format, and the Postgres community considers
not upgrading to them to be riskier than upgrading. Major releases are the
first part in the versioning scheme, i.e. 16.4. These bring thoroughly vetted
new features, and can change the internal format of system tables and data
files. As such, they don’t have compatibility with the data stored by a
previous major release (but you can upgrade it). In short, new major releases
are what keeps Postgres moving forward. Each major version is typically
supported for a period of five years, during which patches and security
updates are provided.

Feature-wise, backward compatibility is almost a given. SQL is SQL, and
something that was written for Postgres 9.3 will usually work with Postgres
17. The upgrade path from version to version has proven to be very reliable.

This then brings us to the burning question, why are people wary of
upgrading?

First of all, the dreaded "it works fine now". You can be lulled into a false
sense of stability by adhering to the tired adage "A tested and monitored
system is stable". In reality, what works today may not work tomorrow if
your users discover a latent bug, or if the application triggers unexpected
behaviors through changing workloads or data access patterns. Also, don’t

forget about new security vulnerabilities that can always crop up. You should
not rely solely on your own testing to ensure that the system is secure.

Closely associated is the fear of an upgrade potentially introducing problems,
such as bugs, performance regressions or incompatibilities. A lack of
familiarity with PostgreSQL can also be a causal factor, as DBAs may worry
that they don’t have sufficient knowledge to execute the upgrade without
jeopardizing the system.

Finally, there are organizational reasons that may contribute to upgrade
avoidance. Bureaucracy in the approval process, the need to coordinate with
multiple departments, and the need for — and reluctance to schedule — 
downtime can all discourage upgrades.

By failing to upgrade your Postgres installation regularly, you are exposing it
to significant risks. Critically, you will miss out on security-related patches.
As an open-source project, PostgreSQL has the ability to issue updates to
eliminate security threats, sometimes within a matter of hours — which is
unheard of in proprietary software. However, if you stay on an outdated
version, or even worse, one that’s fallen out of support, you won’t get the
benefit of any of that.

The second reason why you should upgrade regularly is that bug fixes keep
streaming in. Both newly introduced regressions and long-standing bugs
(which can lay undetected for years) are continuously addressed. By not
upgrading, you are increasing the likelihood of encountering a bug that has
already been fixed in a later version.

Thirdly, you will be missing out on the newer features and performance
enhancements that every new major release brings. Those that stayed on
PostgreSQL 9.6 didn’t get native (declarative) partitioning and logical
replication. Those that stayed on version 11 didn’t get pg_checksums or
generated columns, and those that stuck with Postgres 13 didn’t get
throughput improvement for large numbers of connections and advanced
features like the streaming of large transactions and libpq pipelining.

Finally, the longer you stay on an older release, the more difficult it becomes
to maintain and the more complicated the upgrade path becomes.

Speaking of upgrade paths, PostgreSQL is great in that you can upgrade from
one major version to another without having to upgrade to the intervening
versions. However, when you do this, it is vitally important to read the
release notes of every single intervening major version.

You should always read the release notes for every upgrade, even for minor
version upgrades! A good reminder of why is that while release 14.4 fixed an
index corruption bug, the fix required a REINDEX for some cases. Similarly,
this release addressed a security vulnerability but the resolution could affect
users of the extension pg_trgm.

On the subject of extensions, remember that those come with their own bug
fixes and release schedules too. You should always check that the new
extension version is compatible with your current PostgreSQL version.

Upgrades aren’t as risky or disruptive as they are made out to be. Especially
minor release upgrades involve little risk and are a good way to stay on top of
the latest improvements. For major release upgrades, there are tools, such as
pg_upgrade, that have been refined over time to the point of being considered
extremely reliable (and they also have dry-run modes for sanity checking).
Alternate upgrade methods, such as using logical replication for near-zero
downtime upgrades, may involve more work to pull off but can also
significantly reduce disruption to the deployment.

Finally, the commitment of the PostgreSQL project and its community to the
reliability of the platform ensures that the upgrade path is made robust, is
well-tested, and is very well documented in the accompanying release notes.

Tip

Make sure to check out the "Version and Platform Compatibility" section of
the PostgreSQL Documentation for breaking changes:

https://www.postgresql.org/docs/current/runtime-config-compatible.html

7.7 Not upgrading your system

Hopefully, the benefits of keeping your PostgreSQL installation up to date
are clear by now. What’s slightly less obvious is that you may upgrade your
Postgres regularly but leave your operating system stuck on the same release
due to inertia or reluctance on the part of system administrators. It’s not
uncommon for production environments to stay on the same operating system
major version for four or five years. Sometimes they avoid the upgrade for as
long as they can get away with, only upgrading just before — or, in some
cases, even just after — all support for the OS has been withdrawn. Extreme
bad examples of this are Debian, Red Hat and Ubuntu’s commercial offerings
for support of ancient releases for up to 10 years, which is far longer than is
comprehensible or reasonable.

Let us examine a real-world case where following this trend ended up
affecting a production PostgreSQL deployment: A database used with the
PostGIS extension for geospatial queries was exhibiting a performance
slowdown which nobody could explain or account for, because it seemed to
be restricted to specific values of the geospatial data being processed!

For instance, wildly inconsistent performance was observed for a PostGIS
function such as ST_DistanceSphere, which returns the distance in meters
between two points on the globe. The function seemed to be massively
slower for certain pairs of data points compared to nearly identical ones, like
these:

SELECT ST_DistanceSphere('POINT(-150 33)',

 'POINT(-120.120120 42.488888)');

The above query inexplicably took more than fifty times as long to run as the
one below:

SELECT ST_DistanceSphere('POINT(-150 33)',

 'POINT(-120.120120 42.4888881)');

What’s worse is that it was not possible for anyone investigating this edge
case to reproduce the behavior, even when using the exact same combination
of PostgreSQL and PostGIS versions. After much trial and error, someone on
the team managed to trigger this condition on a test system — but only for
these exact data values. This was good enough to start investigating, and
profiling tools like perf were put to use to analyze this on a system level.

It was determined that the Postgres backend process was spending most of its
time in the libm math library function __mul:

+ 62.78% 61.29% postgres libm-2.23.so [.] __mul

Which meant that the culprit was… a multiplication?!

libm is part of the broader GNU C library glibc, and a quick check
confirmed that this behavior wasn’t present on systems employing different
glibc versions. Further investigation uncovered that some slow paths for
trigonometric sine and cosine functions had been found in glibc. This
performance problem had already been eliminated from the mathematical
functions TWO years previously. However, the system in question had been
using a glibc version that was FOUR years old.

Because a significantly outdated version was still in use, it still contained
these inefficient paths and had missed out on this critical optimization. This
was the cause of the hard-to-pinpoint dramatic slowdown in the geospatial
math.

This underlines the importance of keeping system libraries up to date as a
vital safeguard against obscure issues like this. Even when PostgreSQL and
its extensions appeared to be working fine, the system library that formed the
underlying dependency ended up triggering a performance bug further down
the line in the software stack, making it much harder to troubleshoot.

System administrators' reluctance to update system components or Postgres
itself often manifests as a misguided attempt to "maintain stability" in
production environments. It is perceived that by not upgrading, the risk of
introducing new bugs or downtime is reduced, as the system currently
appears to be working fine. However, as shown by our example, this is a
dangerous mindset because users may be exposed to lurking bugs that can
manifest with new use cases or larger datasets.

Locking down dependencies for fear of potential breakages doesn’t pay off,
as the risk of not receiving critical bug fixes and security updates outweighs
the risk of introducing a new unintended behavior which will be easy to
detect and fix. Moreover, the longer updates are postponed, the more tangled

the dependency chain becomes. Subsequently it becomes harder to apply all
the accumulated updates, and more things have to be tested. Especially
skipping minor version updates, which usually entail no functionality change
or contain breaking changes, is unforgivable in a modern database
environment.

7.8 Summary

Running out of disk space can cause serious problems, so monitor your
usage closely. Rash decisions like deleting what looks like logs or
unnecessary files or resizing volumes can make the situation worse.
Identify what’s consuming your space, and mitigate by employing
multiple volumes.
Storing PostgreSQL logs on a separate filesystem from the database
helps you reduce the risk of excessive logging filling up your disk. You
should also implement log rotation and enforce log size limits.
Regularly checking PostgreSQL logs is crucial for identifying and
addressing configuration issues, performance bottlenecks, data integrity
concerns, and security incidents in near real-time. This can allow you to
deal with problems before they escalate, and you can use pgBadger to
help with the task.
Not monitoring your PostgreSQL database can lead to undetected
performance issues, security threats, and resource exhaustion that could
impact its operation. By using the appropriate tools and metrics to look
out for slowdowns, resource spikes, and maintenance needs, you can
ensure optimal performance and mitigate risk.
Long-term tracking of PostgreSQL statistics is important for
understanding performance trends and making informed capacity
planning decisions. You can use the usual monitoring tools, or the
lightweight pg_statviz extension to capture and visualize these
statistics over time without the need for heavy tooling or storage
overhead.
If you don’t upgrade Postgres regularly with minor releases, you can
incur security risks or run into bugs that have been fixed. By not
upgrading to the next major release you can and miss out on new
features and enhancements. Upgrading is made safe and reliable by
well-tested tools and thorough documentation. Don’t fear the upgrade 

— fear the alternative.
Failing to upgrade the operating system and dependency libraries as
well, can lead to obscure PostgreSQL performance issues, bugs and
vulnerabilities, negating the perceived stability in pursuit of which you
avoided to upgrade.

8 Security bad practices
In this chapter

Being careless with command-line password use
Inadvertently exposing your database to outside actors
Granting more access than necessary
Writing and using functions insecurely

As a well-respected piece of software, PostgreSQL is renowned for taking
security seriously, and its security-by-default posture. The project’s Security
Team is comprised of experienced contributors who assess and react to
threats rapidly, through the issue of minor releases that contain the
vulnerability fixes.

However, unfortunately, the majority of IT security breaches are not
attributable to obscure exploits and vulnerabilities but rather more mundane
reasons, such as that the system administrator hasn’t changed the default
credentials in the production server. When security best practices are not
adhered to, there can be severe consequences like attacks leveraging privilege
escalation, data breaches, and worse. What we want to address in this chapter
is operator error, i.e. how sloppiness can impact Postgres security, and what
you can do to prevent this.

8.1 Specifying psql -W or --password

Most PostgreSQL command line tools, like psql, accept the same options,
such as -h or --host= for specifying the hostname of the database server to
connect to or -U/--username= for the user to connect as. It’s very common
for users to use the -W or --password switch when connecting to specify the
password for the user.

Our database administrator needs to connect to Frogge Emporium’s server to
perform some activities. It’s something they have already done dozens of

times today and are starting to find it tedious because, to connect, they’ve had
to type in their password a lot, each time issuing this command:

psql -h froggeserver -U frogge -W

It’s getting late in the day and they can feel their typing getting sloppy
because of the tedium. While they’re almost certain they mistyped their
password, psql connects to the server successfully. Surprised, they think they
must be a better typist than they believed they were, even when tired.

What’s happened in reality, though? They had indeed entered the wrong
password, yet the server let them through and accepted the connection. How
can that be? Didn’t they specifically ask psql to prompt them for a
password?

This is why using the -W option is what we, in PostgreSQL circles, call a
footgun or a feature that’s likely to let the user shoot themselves in the foot.
Using it can be misleading and detrimental to security. Why is it wrong then?

First of all, by using --password, you are telling whatever Postgres utility
you are calling to prompt you for a password — regardless of whether one is
needed by the server. To elaborate, the database server may be configured
(some would say misconfigured) to accept incoming connections without
requiring a password.

As a result, our DBA is lulled into a false sense of security. Since the client is
asking for a password, it’s easy to assume that the server is running in
password-protected mode whereas it really isn’t. This means that anyone in
their place could just as easily connect passwordless, and they are none the
wiser because they think they are authenticating properly by entering their
password.

What’s more, specifying the -W or --password option is completely
redundant! If PostgreSQL’s authentication settings are configured to require a
password to connect, the server will automatically ask for one even if you
don’t pass this option in the command line.

Fortunately, -W doesn’t allow you to specify a password in the psql

command line, as that is a significant security oversight. If you could do that,
the cleartext password you typed in would be visible in the system’s
processes as listed by top or ps faux. Even worse, it would be recorded in
the shell’s command history. However, even though Postgres protects you
against making this mistake, you should be really careful never to include
cleartext passwords in connection strings in configuration or script files.

An additional issue with requiring the client to prompt for a password even
when one isn’t necessary is that wrong passwords also work. Since the server
doesn’t need one, it simply ignores the password sent by the client.

Finally, getting into the habit of using -W can result in unpleasant surprises
for the user when connecting from a different workstation or client. If
password-based authentication is enforced for that connection, they may be
blindsided when the password they previously thought was accepted by the
server no longer works. If the password wasn’t being checked by the server
on their other connection, they would have thought it was correct even if it
was invalid.

What’s best is to basically forget about the existence of this switch and rely
on the automatic password prompt that is triggered by PostgreSQL whenever
one is required. If the server is not configured to be protected with a
password, this is definitely something you should be aware of.

8.2 Setting listen_addresses = '*'

Since we mentioned configuration, it’s time to look at one of the most
commonly misused parameters in postgresql.conf, namely
listen_addresses. It specifies the IP addresses on which the PostgreSQL
server should listen for incoming connection requests. The default value for
that is quite restrictive because it’s set to localhost. So, when our proverbial
developer stops experimenting locally on their laptop and wants to try out
their code on an actual database server, they find that what worked locally
doesn’t let them connect over the network.

What’s the easiest way to make the server let you connect? Simple — just set
listen_addresses to the wildcard value "*" which means "any address",

restart the server process, and presto, you can connect. Great, right? Well, no.

The reason this scenario is not great is that this configuration change allows
the database instance to accept connections coming on any of the DB server’s
IPs, that is, any one of its configured network interfaces.

Why is this bad? Typically, your databases will only need to be accessible
from specific private networks, such as a secure intranet or a VPN
connection. However, if the server has other network connections configured,
such as one that is connected to the Internet, this setting will make Postgres
accessible through all interfaces, including the public Internet connection.
Needless to say, if your server responds to connection requests coming from
a network it’s not meant to listen on, this creates a larger attack surface and
forms a security risk.

listen_addresses = 'localhost' is one of the predefined choices that are
included when we are talking about PostgreSQL adopting "security by
default". The configuration should default to the most secure setting possible
which, in this case, is only allowing local connections on the loopback
hostname and ignoring anything coming in from the network. This way,
network connectivity to the database has to be explicitly enabled by the DBA.

Specifying listen_addresses = '*' effectively negates the default security
built into the product. For a real-world example of why opting for security by
default is a good idea, you should know the following:

Note

In 2020, security researchers found that a staggering 3.6 million MySQL
and MariaDB servers were exposed to the Internet.

Needless to say, you don’t want your server open to potential attackers who
can easily perform port scans to discover open database instances on insecure
networks such as the Internet.

Instead, make sure that you are restricting listen_addresses to only those
interfaces and networks from which clients are actually supposed to be able
to connect. For instance, if Postgres should only be accessible from a private

network, specify just the database server’s IP on the interface connected to
that network in postgresql.conf:

listen_addresses = '10.10.10.56'

It’s also good practice to set up firewall rules that restrict access to the server
instance to only trusted subnets and IPs. Many firewalls also implement
logging, which can help with intrusion detection.

8.3 trust-ing in pg_hba.conf

The infamous pg_hba.conf is one of the most confusing and, unfortunately,
feared beasts in the PostgreSQL configuration jungle. It contains the Host-
Based Authentication (HBA) rules for the database server instance, which
control who can connect, where they can connect from, what they can
connect to, and how they need to authenticate for that. Its syntax is well-
defined for what it’s supposed to do but is sadly using a format that few will
understand nowadays. This can lead to developers and administrators
struggling because they have to fiddle with the entries in this file a lot to
make Postgres finally accept their connections.

psql -h froggeserver -U frogge

Password for user frogge:

psql: error: connection to server at "froggeserver" (10.10.10.56), port 5432

 failed: FATAL: password authentication failed for user "frogge"

Sometimes, out of frustration and desperation after having tried lots of
combinations and seen the above message for the hundredth time, they will
configure the server to just trust them for this connection.

This has the consequence of making the server accept their connection
without the use of a password, which is frankly "fine for now", as they are
finally able to connect.

Other times there is much less drama and the choice to do this turns into a
learned behavior and habit for developers. To avoid dealing with passwords,
.pgpass files, certificates, etc. they will take the easy option to allow
connections with trust in pg_hba.conf to speed things along, as follows:

host all all 10.10.10.0/24 trust

The above entry means that any user defined in Postgres can connect to any
of the cluster’s databases without a password from the entire network
subnet 10.10.10.x.

"Okay, so why is this a problem?", you will say. After all, the Frogge
Emporium intranet on 10.10.10.0/24 is private and only authorized persons
have access to it.

What happens, though, if another device, application or piece of software on
another server in this subnet is compromised? Then, as Postgres is trusting
all connections from that network, it will allow full access to any potential
attacker with no authentication.

pg_hba.conf is called that for a reason. Host-Based Authentication ensures
that only trusted clients from trusted hosts can connect to the server, and
defines how they must authenticate to connect to specific databases.

trust is not an authentication method: it means "let them in with no
authentication". It’s dangerous and should not be used under any
circumstances on machines in, or connected to, production environments as it
constitutes a serious security vulnerability. Even if you use trust for local
connections only, can you guarantee the security of every other bit of
software that’s running on that server?

The answer is easy: HBA trust should be avoided entirely. At a minimum,
you should use the scram-sha-256 password-based challenge and response
authentication method to secure access to your databases, like this:

hostssl frogge frogge 10.10.10.29/32 scram-sha-256

And while you’re at it, it’s not a bad idea to enforce SSL encryption and only
allow access from specific users on specific hosts to specific databases, as in
the above example.

"Trust" is rarely safe in any environment, let alone in production, as it
bypasses essential security layers, and it can end up putting your data at risk.

8.4 Database owned by superuser

It’s super common to find clusters that contain databases owned by the
postgres user, or some other user that has been granted superuser privileges.
This is not surprising, as many create those databases by simply following
instructions from a post they found on StackOverflow or poor online
tutorials. Alternatively, echoing a familiar theme from the two previous
sections, some developer or DBA gets fed up with not being able to run all
the nice DDL commands they prepared. They then end up doing everything
as a superuser, including creating and owning databases. As a PostgreSQL
superuser has unrestricted privileges, they can create and manage schemas,
tables and all other types of database objects.

Sooner or later, someone creates a new database and makes it be owned by
the superuser:

CREATE DATABASE frogge_next OWNER postgres;

Before you know it, other people are using it too, and this arrangement
achieves a certain degree of permanence. Unfortunately, while you wouldn’t
expect to see it on production systems, it is very common to find operational
databases owned by a superuser (or even worse, to find user tables and
objects in production use living inside the default postgres database).
Sometimes, you’ll even find the application connecting to the database using
the default postgres superuser account.

Let’s see why this is an ill-thought-out strategy.

PostgreSQL’s design is meant to encourage the application of the Principle of
Least Privilege which advocates for granting only those permissions
necessary to perform particular tasks.

If you make the database and the objects contained within owned by a
superuser, for most actions it will be necessary to access them as a superuser.
Therefore, it’s easy to assume that people will try to connect to this database
using correspondingly privileged accounts.

The problem with this is that, in Postgres, the superuser is omnipotent and

can bypass pretty much every security check. This makes using superuser
accounts for regular database ownership and operations very dangerous. We
can illustrate:

At some point down the road, Frogge’s new developer connects to the
database with their unprivileged account jettrodriguez. Somehow, they
manage to run a stored function called reset_schema(), a function that
cleans out the database so a fresh copy can be restored in its place. However,
it was designed by the DBA for developers to use with their unprivileged
accounts in development environments only. reset_schema proceeds to DROP
all tables in the current schema, and this now has disastrous consequences for
the production database, as the only option is to restore the data from backup,
causing significant downtime and reputational damage to Frogge.

You ask, how was this allowed to happen? The function was created by a
superuser, and that superuser bestowed the rights to execute it as a superuser
to anyone who uses it. As such, the function ran with superuser privileges and
proceeded to wreak havoc. The unprivileged developer account DID have
permission to execute functions in that database, and this function WAS
visible to the account, so it was easy for disaster to strike.

Figure 8.1 A superuser, analogous to the root user in UNIX, can bypass all privilege checks and
do more things that no other user can. It is far more dangerous than simply having all privileges
on all databases.

As the function was created with a privileged account, allowed to run with
the corresponding permissions, and provided to unprivileged users, all of the
privileges pictured above became available to the unprivileged user during
the execution of this function.

We’ll see in the next section "Setting SECURITY DEFINER carelessly", how it
is possible to expose yourself to malicious actions simply through improper
ownership of stored functions or procedures. Even if the stored code is not
supposed to be dangerous, executing a buggy procedure with superuser
privileges can make the consequences much worse.

Another example: The organization has implemented Row-Level Security
(RLS) policies on all their tables. A user connects with an unprivileged
account that, through RLS restrictions, is not supposed to see any rows of
data in those tables. The user proceeds to SELECT from a VIEW and,
surprisingly, the query does return rows of data. That view is owned by a
superuser and, if you remember, we said that superusers bypass most
permission checks — therefore the RLS POLICY will not be taken into account
and the view will return rows to whoever selects it.

Tip

Look up another way to protect VIEWs against data leaks with the
(security_barrier) attribute in the PostgreSQL Documentation:
https://www.postgresql.org/docs/current/rules-privileges.html

Therefore you need to take a step back and ask: do you really need the
superuser to be involved in your database’s ownership, given all the
privileges a superuser has? Consider the dual risks of people connecting as a
superuser to use this database and of objects having superuser privileges
attached that effectively allow privilege escalation by unprivileged users. By
bypassing the proper use of Postgres ROLEs, you are incurring the unnecessary
risk of unauthorized data access and of destructive actions being performed
accidentally.

Additionally, if everyone connects with the superuser account, auditing and
accountability become difficult, as it’s hard to track who performed what

actions. Many regulatory frameworks require the enforcement of Role-Based
Access Control (RBAC) and audit trails, so make sure that you use the built-
in role system provided by PostgreSQL.

Most common tasks do not require superuser privileges. You should restrict
the use of superuser accounts to only those administration tasks that require
the added privileges and create databases and objects owned by non-
privileged accounts. For every new database, you can create a dedicated
database role that just has the necessary privileges to own and manage the
database. Afterwards, you can GRANT the appropriate privileges on this
database’s objects to the accounts that need them.

8.5 Setting SECURITY DEFINER carelessly

In PostgreSQL, you can write code into the database backend with functions,
triggers and RLS policies. As we saw, this code can be executed
unintentionally, so it can become a Trojan horse of sorts.

A developer at Frogge Emporium with the username marionjohnson is asked
by the Sales and Finance departments to create a function that returns the
running total of sales income for the month, and is granted authorization to
access this data. They write the function as follows:

CREATE OR REPLACE FUNCTION erp.current_month_sales()

RETURNS numeric AS $$

SELECT sum(amount)

FROM erp.payments

WHERE tstamp BETWEEN date_trunc('month', now()) AND now()

$$ LANGUAGE SQL SECURITY DEFINER;

The declaration SECURITY INVOKER, which is the default, means that the
function will be executed with the privileges of the user that calls it. As the
developer wants users from Sales and Finance to be able to execute the
function, they choose to specify SECURITY DEFINER so that they’ll be able to
execute it with marionjohnson's (the owner’s) privileges.

It works as designed, and the departments in question are pleased, until one
morning when the developer receives an angry phone call asking how
everyone in the company seems to know the sales figures. You see, Frogge

treated this as privileged information, and they were not expecting
unauthorized employees to be able to access it. By using SECURITY DEFINER
and not enforcing checks on who could execute this function, carte blanche
was practically given to anyone who came across it.

SECURITY DEFINER works like the setuid bit in UNIX file access control.
When set, it allows a file to be executed with the permissions of whoever
owns the file instead of the permissions of the user executing it. It has
legitimate uses for providing access to functionality that certain roles cannot
perform directly themselves. For example, a trigger function that writes to the
table audit_log — that users aren’t permitted to touch — when specific
actions are performed.

This is why it makes sense to keep SECURITY DEFINER functions as
straightforward as possible to ensure that they only serve their single purpose
and can’t be repurposed through parameter use, side effects, or injection of
logic.

Tip

Another relevant cool concept is the LEAKPROOF declaration in function
definitions, which indicates that the function has no side effects. This means
that it cannot reveal information about its arguments except through its return
value. Therefore a function that throws an exception for some argument
values but not for others can be considered "leaky".

To mitigate these risks, first ensure that only the roles who are supposed to
can execute any functions declared as SECURITY DEFINER. You may do this
by revoking the default execution privileges from PUBLIC and selectively
granting the privileges to run the function, like so:

BEGIN;

 CREATE OR REPLACE FUNCTION erp.current_month_sales()

 ...

 REVOKE ALL ON FUNCTION erp.current_month_sales() FROM PUBLIC;

 GRANT EXECUTE ON FUNCTION erp.current_month_sales() TO sales_role;

 GRANT EXECUTE ON FUNCTION erp.current_month_sales() TO finance_role;

COMMIT;

Wrapping everything inside the same transaction ensures nobody
unauthorized can use the function before the permissions are set correctly.

Secondly, make sure that any SECURITY DEFINER functions are well-written,
tested and reviewed, and that they validate their inputs properly. Otherwise,
they may be exploited to cause data leaks or for privilege escalation purposes.

Additionally, always SET the search_path on a SECURITY DEFINER function
to a value with a safe order (see the next section "Choosing an insecure
search_path" for more details on why), like this:

ALTER FUNCTION erp.current_month_sales()

SET search_path = pg_catalog, erp, pg_temp;

Last, use SECURITY DEFINER only where it’s strictly necessary as you may
end up creating complicated permission tracking scenarios, which make
managing your system’s security harder.

Warning

As stated in the docs, "Functions run inside the backend server process with
the operating system permissions of the database server daemon". This means
that if we write a function in a programming language that permits unchecked
memory access, we can write code that changes the PostgreSQL server’s
internal data structures. This is why languages in this category are labelled
"untrusted" by Postgres, and only superusers are permitted to create functions
using them.

8.6 Choosing an insecure search path

In order to save us all some typing, PostgreSQL allows us to specify
unqualified object names without having to include the schema name, so we
can type in the table name customers instead of erp.customers. The Schema
Search Path (search_path) is what makes this possible, as it is the list of
schema names that Postgres goes through to find the object that we’re
referring to.

The schemas (or schemata) are searched in their order of appearance in the

search_path. Even if there is a table with the name customers in another
schema that is not part of the search path, it will not match and Postgres will
say that no objects with that name were found. The default looks like this:

SHOW search_path;

 search_path

 "$user", public

(1 row)

This signifies that first, we’ll look for that object in a schema with the same
name as the current user. If one is not found there, we move on to the next
entry, which is the public schema.

Unfortunately, this ordered search paired with the matching of the first item
found means that you can interfere with the behavior of users' queries by
accident or on purpose. To elaborate, if you have permission to create objects
in a schema that is found in someone else’s search_path, you may place
your own object before the one they would normally use due to the search
path order.

At the very least, this can cause confusion. For example, if a well-known
function name is reused, so that now(), which is in fact pg_catalog.now(),
gets overridden by erp.now() which gets called in its place.

At worst, someone with malicious intent could create an object in a schema
that’s ahead of the usual one in your search path to hijack the order in which
that object name is encountered. This can trick you into accidentally reading
from, or inserting into their table, or executing their code with your
privileges. Because of the extensibility of PostgreSQL, this risk can extend to
unexpected objects, such as operators, sequences, etc.

For instance, if you have a search path that looks like this:

SHOW search_path;

 search_path

 "$user", public, erp

(1 row)

Someone acting in bad faith could create a function
public.current_month_sales(), and that would be chosen over
erp.current_month_sales(), causing you to execute their arbitrary code
instead of what you were expecting to run.

This is why users nowadays don’t have permission by default to create
objects in the public schema, but BEWARE: Before PostgreSQL 14, all
users had CREATE privileges in the schema public. This means that any
database upgraded from PostgreSQL 14 or earlier will retain this privilege.
To remove it, you can run:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

The strongest degree of protection against abuse like this can be afforded by
restricting who can define objects. Users cannot access objects in a schema
that doesn’t belong to them unless they are granted USAGE privileges on that
schema by the owner. They will also need CREATE privileges on the schema to
create objects, and so on. Use roles to control which schemas each user is
allowed to access and which they are allowed to CREATE in. In case that’s not
feasible, remove from the search_path any schemas that allow untrusted
users to create stuff and make your queries refer explicitly to objects whose
owners you trust.

You should also avoid overuse of the public schema — if you have a
complicated system you should probably create separate schemas for each
application component or team. If you have multiple tenants, their data can
also reside in different schemas.

In general, while the public schema and the search_path offer convenience,
you need to control their use carefully to avoid the risks of query hijacking
and privilege escalation through object name override.

8.7 Summary

Using psql -W or --password can be confusing and lead to lapses in
security. Rely on PostgreSQL’s automatic built-in password prompt
mechanism instead.

Setting listen_addresses = '*' can expose your database server to
insecure networks, so you should only enable the trusted network
interfaces that are necessary for database connectivity.
Using the trust method in pg_hba.conf in production environments is
unacceptable. You should always enforce proper authentication to your
server and restrict access as much as is practical.
Having your databases and their contents owned by a superuser can lead
to security problems and accidental damage to your data. Instead, create
roles that have only the relevant permissions to own and manage these
databases, and grant permissions selectively to other roles.
Declaring functions as SECURITY DEFINER can cause data leaks and
enable privilege escalation. To reduce risk, use it sparingly and with a
safe search_path, and prefer the combination of SECURITY INVOKER
with explicit GRANTs.
Not securing your search_path can let others hijack queries and
escalate their privileges. Apply tight control over object creation in
schemas, and reference objects owned by trusted users only in queries.

9 High availability bad practices
In this chapter

Neglecting proper backup hygiene
Forgoing PostgreSQL recovery features
Being unprepared for database failure
Using the wrong tools for the job

Another thing for which PostgreSQL has gained a reputation in the industry
is its famed resilience. However, this resilience is predicated upon following
best practices and using the proper tools. Dangerous situations can arise if
complacency takes hold on account of "Postgres being a resilient database"
and High Availability (HA) is relegated to an afterthought. Instead, HA
should be central to the deployment plan of any production database cluster.

When we refer to High Availability in this chapter we are encompassing the
techniques and methods that can keep your database accessible to its users
throughout failure scenarios, from minor to catastrophic, and also allow it to
recover from these failures. The goal of HA is to guarantee the minimum
amount of downtime or data loss — being fully aware that the requirements
and acceptable limits can differ for each organization.

Unfortunately, out there in the real world, we can find Postgres installations
whose keepers neglect some (or all!) of the tenets of high availability. This
may be due to misconceptions, overconfidence in hardware and software,
misplaced cost-saving measures or just an outright lack of awareness of the
importance of the topic. If your database suffers downtime or data loss, it will
already be too late to start worrying about HA. This means that the only way
to ensure that your data remains safe is to be prepared, vigilant and proactive.
Now, we can take a look at how things can start to go wrong…

9.1 Not taking backups

Our friendly system administrator (Not at Frogge Emporium, they have
suffered enough! At some other company.) is aware of the risks associated
with losing their organization’s data. In order to make this outcome less
likely, they have opted to go with standard solutions: the disks holding their
database implement mirroring with RAID level 1 so that, even if they suffer a
hard disk crash, there will be a backup drive to fall back on.

RAID

RAID or Redundant Array of Independent Disks is a storage technique that
distributes the data across multiple disk devices to improve performance,
achieve increased redundancy, or do both at the same time. The various disk
arrangements that also specify what responsibilities each disk has in the
scheme are called RAID levels. There are various levels specifying striping,
mirroring and data parity arrangements, and these levels can also be
combined via nesting them. In our case, RAID 1 (mirroring) stores a byte-
for-byte copy of the data on other disks, and so needs a minimum of two
devices.

Apart from RAID, to be extra safe, the administrator has set up a standby
server with PostgreSQL streaming replication. They’ve got double
redundancy now, so everything is rosy, right?

Figure 9.1 A PostgreSQL installation layout, demonstrating the double physical redundancy of
having a standby server but also RAID1 mirrored disks in each of the servers.

Let’s see why they are not as protected as they think they are. First of all,
RAID cannot protect you against filesystem corruption. If the logical file
structure or data within is damaged, this corruption gets perfectly duplicated
onto the redundant disks, and now you have two (or more) identical bad
disks.

What if they had also enabled, through some virtualized or physical

implementation, filesystem snapshots? Well, in the case of some software,
snapshots may be enough to be able to restore the system to a safe state.
PostgreSQL, though, is a complex system with its own write-ahead log,
buffers, transaction states, segmented data files and so on. Its data integrity,
as we know, depends on the WAL and data files being in a state of
synchronization. It is therefore unsafe to take a file-level copy unless the
snapshot is guaranteed to be atomic — i.e. a flashbulb goes off and we take
an instantaneous photograph of the entire filesystem. But, even then, the
result is not great because when we restore this disk snapshot and start
Postgres it is just as if we had suffered a crash. So Postgres, upon startup,
goes into crash recovery and proceeds to replay any committed transactions
from the WAL.

You should be aware that restoring the snapshotted filesystem on top of the
data directory of a running PostgreSQL instance is a recipe for disaster,
because of the near-certainty of inconsistencies that will corrupt your data, so
don’t do that. We saw that if Postgres is stopped before restoring the
filesystem it behaves as if after a crash when it starts back up, but at least any
inconsistencies are taken care of. Realistically, the only safe way to take a
snapshot is for the database to be shut down cleanly before taking the
snapshot (or quiesced by calling pg_backup_start() before, and
pg_backup_stop() after it). However, for many users, this involves an
amount of downtime that they can’t afford.

Warning

If the data is in multiple tablespaces then filesystem snapshots are not safe to
use unless the snapshot is atomic for the sum of the filesystems in use, which
is quite a tall order technically.

Moving on, let’s examine why the redundancy of having a physical replica is
also insufficient to protect them. Take the super simple example of the
following user error taking place on the primary server:

DROP TABLE patient_data;

Some careless soul has dropped an important table in production. This
immediately gets replicated to the standby server, and now the table is gone

from there too. Even with superhuman speed, there is realistically no way to
prevent this from propagating to the other server in time. The only way for
them to get it back is to restore it from the backup that they don’t have.

Even if there is no errant SQL command, replication is not a guarantee for
data safety. Annoyingly, some types of corruption on the primary server
(such as corruption of the WAL through a disk or memory error, or managing
to run two Postgres instances on the same PGDATA) can be replicated to the
standby. If the data is corrupted before it is streamed, the replica will receive
the bad data.

Delayed replicas are not a solution for this class of problem. Even if you set
up an 8-hour or 24-hour replication delay, what tells you that the realization
that something bad has taken place won’t happen 8 hours and one second
after the event — or 24 hours and one millisecond, for that matter?
Remember that the mistake, corruption, or malicious action may not be as
immediately obvious as DROP TABLE patient_data.

The mistake of this organization was that, since they had RAID 1 disks,
server snapshots and a redundant standby server, they felt they did not need
to also take backups.

To recap, solutions at the hardware level like RAID cannot protect you
against corruption occurring at any level that’s above the hardware. Block-
level or file-level solutions such as snapshots are also not a satisfactory
backup strategy for PostgreSQL as they need to be managed and
synchronized carefully in conjunction with the server process. Ideally, you
need to use suitable tools to take backups that are aware of PostgreSQL’s
process, data file and WAL semantics so that they don’t inadvertently destroy
your data integrity. pg_basebackup is a safe backup tool that comes with
Postgres for the explicit purpose of taking safe data directory snapshots — 
and without needing to stop the database.

Note

You can find the official documentation for pg_basebackup at:
https://www.postgresql.org/docs/current/app-pgbasebackup.html

Finally, it is a misconception that snapshots or replication are appropriate or
adequate substitutes for having proper backups, and we will see in the
following section "No Point-in-Time Recovery" more reasons why this is the
case. Backups give you the ability to recover your data regardless of your
hardware or replication setup. Because of the high risk posed to operations,
any experienced DBA should find the lack of explicit backups unforgivable.

9.2 No Point-in-Time Recovery

Our DBA has seen the light and has decided to begin backing up
immediately. The time investment is seen as worthwhile, and everyone is
pleased to hear that their database will be made safer. The traditional concept
of a database backup involves "dumping" the data and then storing it
somewhere safe, so they decide to use pg_dump. According to the
documentation, this is "a utility for backing up a PostgreSQL database" so, as
it comes with Postgres, it seems to fit the bill well.

Backups are made — pg_dump can only dump one database at a time so, one
by one, each database in the cluster is successfully backed up. These backups
are guaranteed to be consistent as pg_dump obtains a snapshot to extract the
data, and there’s no need to interrupt database operations. A point of note
though: backup consistency across two interdependent databases cannot be
guaranteed while they are both running.

The pg_dumpall utility extends the backup scope across the cluster by
essentially looping through and performing a pg_dump of each database.
While this is convenient, and ensures that global objects common to all
databases are included, the backups are still not consistent between databases.

Let’s assess where we stand now. We have safe dumps of the data that can be
perfectly restored to an empty database. Great — let’s look at the problems
that we mentioned in the previous section, one by one.

Are we protected against losing all our data? Yes, mostly. We can restore it at
will, irrespective of what happens to our servers. The reason why it’s "mostly
yes" is because we only have the data up to the point of the last backup, so
while we may lose some of the most recent transactions, not all is lost. Are

we safe against data corruption? Eh, again yes and no. We have a snapshot of
the data, but only up to the point of the last verified safe backup. The same
goes for accidental or malicious damage to the data. Even if you can pinpoint
exactly when it happened, you can only roll back to the point where the last
known safe backup was taken by restoring it.

This means that even if they back up their DB every day, a proverbial DROP
TABLE executed in the afternoon would result in the loss of all data from that
morning with no way to recover it. The same is true for filesystem snapshots
and any full backup method, not just pg_dump.

This is exactly why the late great Simon Riggs introduced Point-in-Time
Recovery (PITR) to the PostgreSQL code base some 20 years before the
writing of these pages. PITR allows you to effectively roll your database back
to PRECISELY the transaction you require. This means restoring to the exact
point BEFORE the damage occurred because, with PITR, you are not limited
to the state captured in the last full backup of the database. It can achieve this
by taking advantage of the write-ahead log — after all, we do have a perfect
and replayable record of each and every transaction.

To perform point-in-time recovery we leverage the combination of so-called
base backups (produced by the Postgres utility program pg_basebackup) with
archived WAL files. The base backups are full binary-perfect snapshot copies
of the entire database cluster, not just individual databases. WAL archival is
also known as continuous backup, because if you keep around all the WAL
that’s been constantly produced by Postgres since your base backup, it allows
you to restore to any point in time after the base backup was taken.

All you need to do to take advantage of this is to set up WAL archiving by
defining a custom archive_command in postgresql.conf, and then taking a
full backup with pg_basebackup. Remember that base backups are snapshots
in essence so it’s important to note that, for PITR, you also need all the WAL
generated from the moment you start the backup until it completes. Restoring
is as simple as setting the recovery_target_time parameter to the moment
you want to recover up to, and then pointing Postgres to a restored data
directory. In PostgreSQL 17, a feature to facilitate backing up huge databases
was introduced: incremental backups using pg_basebackup. These can be
combined with older base backups to create full backups.

Timelines

Please read about timelines in the "Continuous Archiving and Point-in-Time
Recovery" section of the PostgreSQL Documentation. It explains how you
can travel back in time to before a transaction was committed, but also branch
off into different timelines as many times as needed to pinpoint the correct
moment to return to, all without overwriting or losing any data:

https://www.postgresql.org/docs/current/continuous-
archiving.html#BACKUP-TIMELINES

To return for a moment to the topic of pg_dump, there are other serious issues
with using it as a backup tool. pg_dump performs logical, not physical
backups. This means that it stores the description of how to recreate the
database as opposed to the actual bytes of data. As a consequence, when you
restore from a pg_dump, PostgreSQL needs to recreate on disk the binary
structure of every object you are recovering. This includes indexes, which are
not copied over and get recreated on-the-fly, so the restore operation can end
up being quite time-consuming. Additionally, your old cluster’s internal
Postgres stats are lost (since this is a fresh cluster) and table statistics need to
be recreated from scratch.

If you don’t take advantage of point-in-time recovery, you are exposing
yourself to the danger of easily avoidable data loss and possibly painstaking
recreation of the missing data. PITR and continuous archival may require
significant storage space because of the need to store full backups alongside
any WAL generated since they were taken. Nevertheless, it is regarded as an
essential feature for heavy-workload systems and enterprise usage where high
reliability is critical.

9.3 Backing up manually

So, following on from the previous sections, the diligent DBA has resolved to
back up the database every day, taking control of the situation personally as
it’s such an important process. However, it’s one of the facts of life that
everyone needs a day off eventually. One Monday morning comes around
and the administrator isn’t there to take a backup. Instead, they are basking in

the warm sun at the beach on a well-deserved vacation.

Is this the mistake?

No! The diligent DBA has dutifully delegated this deed to a developer. Said
developer indeed comes in on Monday morning and proceeds to take a
database backup every day for the rest of the week while the DBA is away.

When the DBA comes back the following week feeling all refreshed, they
take a look at the server and are horrified to discover that the developer had
saved the backups of the PGDATA location /mnt/pgdata inside a directory
called /mnt/pgdata/backups! Not only is this not the proper backup location
but, even worse, it’s on the same filesystem and physical drive as the
database. Disaster was averted, but only narrowly because the organization
was lucky enough to not suffer a server failure during the DBA’s absence.

This should teach us two things. First of all, don’t keep the backup on the
same physical hardware as the database — we all know that hardware
eventually fails. Some would take this further and mandate that there should
always be an offsite copy of the backups, in case the whole site catches on
fire or otherwise.

The second lesson here is that nobody should rely on manual processes to
safeguard their data. Humans make mistakes, they get distracted or forget,
they miss work, they leave on holiday or for another job. They may take the
backup at a different time every day or even skip a day. Worst of all,
sometimes they tend to keep all the knowledge of the backup procedure in
their head so it isn’t written down anywhere. I think we’ll all agree that all
this variability and uncertainty has no place inside an IT system.

The key to good backup hygiene is to remove the human factor and rely on
automation. The ideal here is to have a non-interactive system that
automatically takes regular backups of the database — and of course, this
should be monitored in case it also fails for some reason. At the same time,
you should take advantage of continuous WAL archiving for point-in-time
recovery purposes.

Warning

Beware that you can’t mix and match logical and physical backups — you
can’t perform PITR with a pg_dump backup and a bunch of WAL files.

You can use any tool that comes with PostgreSQL and set up an automatic
schedule for your backups using a reliable task scheduler such as cron which
is available on any UNIX system. The two most popular dedicated open-
source tools are Barman (Backup and Recovery Manager) and pgBackRest
(Postgres Backup and Restore). These make PITR easy and support advanced
scenarios such as complex schedules, backing up multiple servers, multiple
locations for redundancy, retention policies, a choice of transfer methods, and
parallelization. Setting them up is as simple as installing the packages and
adding a couple of lines in their respective configuration files.

You could craft a backup architecture that looks something like this:

Figure 9.2 A sample PostgreSQL backup setup with a dedicated Barman server and geographical
redundancy, showing the possible transfer paths.

So you could back up your cluster with Barman automatically using
pg_basebackup to pull base backups and a replication connection to pull in
WAL for PITR. Alternatively, Barman could set up an archive_command that
sends the WAL using rsync, which allows the parallel transfer of multiple
files, as a way to deal with huge WAL production.

Note

You can find these PostgreSQL backup tools and their documentation here:

Barman: https://pgbarman.org/
pgBackRest: https://pgbackrest.org/

Finally, besides being error-prone, manual processes don’t scale well — you
can’t reasonably expect someone to perform frequent backups of dozens or
hundreds of database servers, which is a realistic number for large operations
these days. Now, admittedly, this mistake is not PostgreSQL-specific or even
database-specific, but it happens in the industry more than you would like to
think. It’s simply inexcusable to take backups manually with such an
abundance of backup tools, schedulers and facilities to automate backing up
in the PostgreSQL ecosystem. You can go so far as to say "A backup that is
not automated is no backup at all".

9.4 Not testing backups

This one is, again, one of those that you cannot repeat enough times. There
have been infamous incidents involving important names in the industry
where data was lost because, even though a backup did exist, too much faith
was placed in it working properly.

Let’s imagine that all the previous advice from this chapter has been adhered
to, and backups are being taken from Postgres in an automated fashion,
stored safely in two locations, along with all the necessary WAL to enable
point-in-time recovery. The time comes for the server to blow up, and the
DBA obligingly brings out the backup to restore the database. However,
Murphy’s Law strikes again, and the backup doesn’t work: the restore

command fails. Now, they have no database and no backup to restore one
from. You could say that the situation is somewhat bad.

How can it all go so wrong? There’s ample potential for failure here:

The backup may be broken at the source, i.e. an incorrect invocation of
the command producing an unusable backup.
The backup process creates a usable backup, but the storage medium
corrupts its data at some point.
The backup succeeds, but there’s something wrong with the storage
location and it loses the backup after it’s been placed there.

How can you be aware that something like this has happened? After all, the
backup process produces no indications or hints about these eventualities.

The answer is TESTING — the only way to make 100% sure that your
backups are available and working correctly is to attempt to restore them!

The stakes here are high: after all, the backup is what is supposed to save you
from data loss, only for it to fail when it’s needed most. If you don’t want this
to happen to you, it is a necessity and an absolute no-brainer to test the
backups that you make. After all, commands can go wrong, software can
malfunction, disks can fail, networks can go bad and so on.

You can test your PostgreSQL backups by using a testing environment to
restore them. Alongside the backup itself, you’ll be testing the recovery
procedure too, so this forms a useful "fire drill" for you and your team in the
case of an actual emergency. Here is an example of how to test the backup by
restoring it to a fresh Postgres instance:

1. First, you need to copy the base backup to the testing PGDATA target
directory

2. Verify the base backup’s checksums with pg_verifybackup
3. Copy the rest of the WAL produced since the backup into the test

PGDATA
4. Call pg_waldump on the WAL files to verify that they are parsable
5. Start Postgres from the testing PGDATA directory to recover the

database and verify that it can reach a consistent state

For the ultimate peace of mind, you can go through every page in the restored
database to make sure that it is correctly readable. It just involves using the
pageinspect module to loop over every page of every relation. You read it
from the disk with the get_raw_page() function, check its header with
page_header() and verify its checksum with page_checksum().

Note

You can see how to use the pageinspect functionality at:
https://www.postgresql.org/docs/current/pageinspect.html

The backup verification procedure is also a prime candidate for automation,
and you should have it alert you if any errors are encountered along the way.

We will now wrap up with a true story from the field that shows how scary
things can get if you don’t stick to these best practices. A company that was a
market leader in its field had grown organically over many years. Since the
beginning, they had been using PostgreSQL for their database, which was
central to their operations. It is fair to say that the company could not exist
without this database as it contained critical data for the services the company
provided. One fair day, their database server blew up — the hard disk
malfunctioned.

They were aghast to discover that their backup was unusable and that their
last usable backup was many months old, making most data irrelevant to
current company operations. Ever since they were a small startup, this
company had been taking backups (good) with pg_dump (bad because, since
then, PostgreSQL had gained the features of streaming replication, base
backups and point-in-time recovery, and they should have been using those).
This is another reason why you shouldn’t use pg_dump as a backup tool, even
with full automation configured. If you rely on scripts written decades ago
instead of using a dedicated backup utility that gets updates and fixes, you are
taking a huge risk. User-created scripts can silently fail, for whatever reason 
— and this is exactly what happened in this case. The script the company had
always been using for backing up stopped working at some point, and they
were none the wiser. It may be that your ever-reliable script no longer works
when it is moved into a virtualized environment or when run inside a docker
container, Kubernetes pod, etc.

The only reason this was not an extinction event for the company was that
they had at least one ancient backup, but it was surely a near-extinction event
and a wake-up call. Fortunately, they were able to recover most filesystem
contents from the broken disk but with no recognizable structure. Eventually,
I painstakingly reconstructed their entire database with no data loss, but the
rest of this story is long and for a different type of book.

In a callback to the previous section, you can go so far as to say "A backup
that is not tested is no backup at all".

9.5 Not having redundancy

We’ll now examine the case where the backup strategy is just perfect: Frogge
Emporium is using the proper PostgreSQL tools, takes regular automated
backups and tests them automatically as well. They feel pretty well-protected
now, and their operation is not at risk — or so they think.

What happens if the server catches on fire? They’ll have to procure a new
server to restore the backup into, and that can take time. This can of course be
mitigated by having a spare server around, and this is exactly what cloud
computing resource providers do. Even if they’re using a hosting service
provider, they’ll have to restore the whole database installation into an empty
physical server or a newly created cloud instance.

Although this takes a lot less time, the downtime is still significant, and
here’s when we start talking about the disaster recovery terms RPO
(Recovery Point Objective) and RTO (Recovery Time Objective). RPO is
how much data can we afford to lose in a theoretical disaster scenario — 
we’ve got that handled pretty well, with point-in-time recovery capable of
restoring our data up to the last transaction that was committed in the last
WAL file that we were able to save. RTO, however, is how much downtime
you can afford before service is fully restored, and this is entirely dependent
on our high-availability architecture.

PostgreSQL high-availability features and a bit of history

Replication has been a core part of PostgreSQL’s high availability

architecture since the time of log shipping, when this was achieved with
continuous archiving, by copying WAL files to the other server through the
archive_command. Starting with PostgreSQL 8.2, this introduced the concept
of warm standby servers that were ready to take over from the primary server
at the drop of a command.

With the introduction of streaming replication in PostgreSQL 9.0, WAL
started getting automatically streamed asynchronously to the other server.
This enabled warm standby servers to have more up-to-date data than was
possible by copying whole WAL files and therefore opened the door to being
able to use those servers to serve data as well. The capability of connecting to
a standby server to run read-only queries is known as having a hot standby
(another Riggs feature).

PostgreSQL 9.1 allowed synchronous replication — by performing the
streaming of WAL synchronously, standby servers were guaranteed to
always be up-to-date with the primary by having exactly the same
transactions committed. This eliminates any potential to lose data that hasn’t
been streamed to the standby because of replication lag but introduces a
latency penalty (because of the roundtrip to ensure the transaction is written
on both sides).

In version 9.2, the ability to cascade replication or stream from a standby
server to another standby was added. By using a standby to relay, you can
offload and reduce the number of replication connections that the primary
needs to handle.

Replication slots came with Postgres 9.4, and they solved the problem of
WAL being removed by the primary before it can be consumed by a standby
by guaranteeing that WAL remains on disk until it can be streamed to the last
standby that needs it. This, however, introduces the potential problem of
accumulating WAL on disk indefinitely for an unresponsive or missing
standby.

Release 9.5 introduced continuous archiving in standby, so replicas could
have their own separate WAL archive. Finally, PostgreSQL 10 introduced
native logical replication, but this capability’s main use is not for
guaranteeing high availability.

With a plethora of built-in high-availability configurations at our disposal,
PostgreSQL can cater to almost every HA scenario. Restricting yourself to a
single node makes no sense in a production scenario if the database is at the
center of your operations. At the time of writing these words, tolerating an
RTO of whole days is almost unthinkable, and most scenarios permit an RTO
of minutes or seconds. For very demanding applications, there even exist
solutions that allow PostgreSQL failover in the range of milliseconds.
Remember that PostgreSQL is a single-master system, and you can’t have
two primary servers for your databases at the same time. Failover is the
process of promoting a standby to become the new primary server. We will
further discuss failover mechanisms in the section that follows, "Using no
HA tool".

By taking advantage of data replication to have server redundancy, your
database is much less vulnerable to events such as power outages or damage
to hardware or even the data center location where said hardware is hosted.
Not having to wait for backups to be restored, and being able to just switch to
another server and continue as normal, can make a huge difference for your
organization: just imagine the amount of money a bank or trading firm can
lose in seconds if their system is not available. For reference, the SWIFT
banking system handles about 11.5 million international payments each day.
Given an average payment size of $45,000 USD, this means nearly $6
million is transacted EVERY SECOND. Besides revenue loss, also consider
the reputational harm that an organization suffers when their service is
unavailable. Remember the number of times you’ve been frustrated with the
social media app on your phone when it says "Sorry, something went wrong"
instead of showing you wholesome pictures of cats — you’ve experienced
downtime from the user perspective.

Depending on your requirements, this might be a highly-available system that
you can build:

Figure 9.3 A sample PostgreSQL HA setup with a cascaded replication setup for redundancy and
backup.

In the configuration pictured above, we see that, instead of two, we have
three database servers. If you don’t want to compromise your redundancy
while one server is down for maintenance or because of permanent failure,
you will need a second standby. To avoid putting extra replication and
backup load on our primary, we have configured cascading replication from
the first standby to both the second standby and the backup server.

Quick recovery from failure is something that almost everyone who uses
PostgreSQL professionally needs, and providing redundancy is the best way
to achieve this. Implement streaming replication and keep one or more
standby nodes around — as a bonus, you can use them to offload your read
traffic.

9.6 Using no HA tool

Just as with backups, your high availability setup can greatly benefit from
automation. Consider the following case: Frogge Emporium engineers have
written custom failover scripts to automatically promote a Postgres standby
server when the primary goes down for whatever reason. They’ve tested them
extensively in the lab and have confidence in the script logic. The lab,
though, isn’t like the real world, and they haven’t accounted for replication
lag. One of the replicas may be lagging, and can you guess what will come
next if the primary fails and the lagging replica happens to be the one that
gets promoted?

What will happen is that the other replica(s) will have received more
transactions through the WAL than the new primary has. When the lagged
replica is promoted to become the new primary, it will be missing these
transactions. This will necessitate a complicated procedure to extract the
missing transactions from the replicas that have them and re-integrate them
into the primary’s timeline and data. Otherwise, the expected recovery point
objective (RPO) may not be met. Even worse, this bit of extra WAL will not
be compatible with the new primary’s timeline, as the timelines diverged
upon promotion. As a consequence, none of the other replicas will be able to
follow the new primary without having their WAL rewound back to a point
before the timeline split. By the term "follow", we mean being able to

continue to receive WAL and replay it from that point onwards. "Rewinding"
is simply returning to an earlier point, respectively.

This is why, instead of rolling your own HA code that needs to account for
every corner case, you shouldn’t reinvent the wheel but instead trust solutions
written by experts who have considered every possible failure scenario and
tested their HA software against it.

Let’s check out another such scenario. Between the two datacenters that
contain the primary and standby nodes respectively, we get a network
disconnection for a few minutes (what we call a network partition). Frogge’s
promotion script on the replica node detects that the primary is down
(because it is unreachable) and decides to make the replica the new primary.
However, the original primary node is still working fine and accepting writes,
because it’s just the connection between itself and the standby that has failed.
When network connectivity is restored, we’ll have two Postgres nodes acting
as primaries, with diverging data. This phenomenon is known as a split-
brain, and the data inconsistency between the nodes needs to be manually
resolved, as above.

A dedicated HA tool is better because it can detect and handle such failures
using mechanisms like witness nodes, quorum and fencing to prevent split-
brain. HA tools have awareness of the entire database node cluster and every
instance’s state and WAL position, which is something that PostgreSQL
doesn’t yet do by itself. For this reason, they can effectively coordinate
failover and automatically enforce the consistency of WAL timelines using
tools such as pg_rewind. Some HA tools can even automatically clone
standbys from the primary or a backup and integrate them into the HA cluster
with a single command. Moreover, most have built-in script hooks and other
facilities for monitoring, alerting and conditional operations — such as
reconfiguring PgBouncer to reflect the cluster’s new state after a failover.

You can lean on solid open-source solutions like RepMgr (pronounced "rep
manager", short for replication manager) and Patroni (pronounced pat-roe-
knee) to set up and take care of your high availability cluster with tested
failover mechanisms. For the use of PostgreSQL with Kubernetes, there is the
CloudNativePG operator, which leverages built-in Kubernetes HA patterns to
provide failover, promotion and backup logic that is appropriate for Postgres.

Handling failover and ensuring consistency manually is difficult, susceptible
to human error, and may require more time than your organization can afford
because of its high availability requirements. Equally, custom scripts often
cannot capture the nuances of proper PostgreSQL failover logic and timeline
semantics or handle edge cases. Your architecture can be made more robust
by taking advantage of the tested features of established HA tools, and you’ll
be better equipped to avoid inconsistency, downtime and data loss.

9.7 Summary

RAID and filesystem snapshots can’t help you reliably recover from
corruption, human error or malicious activity. The best way to guarantee
your data is safe is to take backups using appropriate tools like
pg_basebackup.
Taking full backups only makes you vulnerable to data loss between
backups. Leverage Point-in-time recovery with continuous archiving to
be able to restore your database to the point before it was damaged.
Taking backups manually is not robust or reliable, you should instead
schedule automated backups, preferably using dedicated software that is
PostgreSQL-aware (such as Barman or pgBackRest) and ensuring that
you have a redundant copy of the backups in a second location.
Untested backups can fail when you need them the most so to ensure
that they work correctly always attempt a full restore to test your
backups. Do not rely solely on automation but verify every step. Avoid
using homegrown scripts and prefer tried-and-tested solutions.
Having a single database server with no provision for failover inevitably
leads to downtime. Ensure redundancy by setting up standby nodes via
replication.
Manual failover or custom scripts are risky because of the potential for
extended downtime, data divergence or loss. Prefer proven high
availability tools such as RepMgr, Patroni or CloudNativePG for
Kubernetes to ensure reliable and effective management of your HA
cluster.

10 Upgrade/migration bad practices
In this chapter

Skipping upgrade versions (and their release notes)
Not testing thoroughly before an upgrade or migration and what can
happen
Accounting for differences between different database types and
versions

Upgrading PostgreSQL is pretty easy, while migrating from another
Relational Database Management System (RDBMS) to PostgreSQL may be
slightly trickier. Both, however, are critical steps that require careful
preparation and cannot be taken lightly. If something goes wrong, the
upgrade or migration can result in performance issues, outages or even data
corruption. Mistakes and oversights can come from misunderstanding the
upgrade process for databases in general and PostgreSQL in particular

10.1 Not reading all release notes

We mentioned back in Chapter 7 that PostgreSQL offers great backward
compatibility, and that you can generally count on code written for an old
Postgres release still working fine on the latest version. For this reason, as
well as a conscious decision on the part of the developers, Postgres doesn’t
generally impose restrictions on upgrading. This means that you can usually
skip versions provided there is no chasm between them, like upgrading from
a release a decade older. For example, you could upgrade from version 13 to
16, and the upgrade path would usually be very reliable and worry-free.

Our proverbial DBA decides to do just this to take advantage of the new
features and performance improvements offered by the latest and greatest, so
an upgrade from PostgreSQL 13 to 16 is scheduled and performed. As
expected, the upgrade procedure went smoothly, and even though the
company arranged for a maintenance window of 30 minutes, pg_upgrade

made quick work of the task and they were able to finish the upgrade in just a
handful of minutes.

All is well until strange things start appearing in the database. Specifically,
the loyalty discount applied to gym subscriptions seems off since the
upgrade, and the accounts team is asking why. The company offers 1/3 of a
year free for loyal gym customers when they sign up for another full year. To
illustrate, someone signing up on 2024-01-01 would get a subscription that
ended on 2025-04-01. However, the account team has now noticed that the
same subscription beginning on 2024-01-01 would now end on 2024-05-01,
giving the customer an extra free month. The application code around loyalty
discounts hadn’t changed, so the DBA found the discrepancy very strange
indeed and decided to investigate.

The relevant code fragment looked like this:

IF existing AND fullyear THEN

 expiry = expiry + '0.333 years';

END IF;

Just for existing customers renewing for a full year, this snippet idiomatically
adds a third of a year to the subscription expiry date (don’t ask — the
marketing department operates in mysterious ways).

To verify the discrepancy, the DBA writes this short test:

DO $$

DECLARE

 existing boolean; fullyear boolean; expiry timestamptz;

BEGIN

 existing := true;

 fullyear := true;

 expiry = '2025-01-01';

 IF existing AND fullyear THEN

 RAISE NOTICE 'Expiry date: %', (expiry + '0.333 years')::text;

 END IF;

END $$;

This sets existing and fullyear to true and it assumes an original expiry
date of 2025-01-01. The DBA proceeds to run this on a PostgreSQL 13
instance:

NOTICE: Expiry date: 2025-04-01 00:00:00+01

DO

This works as expected. Now the DBA runs the same code on a PostgreSQL
16 instance:

NOTICE: Expiry date: 2025-05-01 00:00:00+01

DO

This verifies that the result has changed between Postgres 13 and 16! But
how and why? After painstaking research in the documentation, the DBA
finds the answer: In the section about the interval type, the PostgreSQL 13
documentation states:

Fractional parts of units greater than months are truncated to be an
integer number of months

whereas the Postgres 16 documentation says:

Fractional parts of units greater than months are rounded to be an integer
number of months

This single word change, from "truncated" to "rounded" makes all the
difference.

To illustrate this further, the DBA runs a more granular query. First, against a
PostgreSQL 13 instance where they observe:

postgres=# SELECT 1.333*12 as months, ('1.333 years'::interval) as months;

 months | months

--------+---------------

 15.996 | 1 year 3 mons

(1 row)

And then similarly against a PostgreSQL 16 instance:

postgres=# SELECT 1.333*12 as months, ('1.333 years'::interval) as months;

 months | months

--------+---------------

 15.996 | 1 year 4 mons

(1 row)

Now the difference is obvious and aligns with the explanation in the
documentation. A 15.996 month subscription was being truncated to 15
months prior to upgrade, and now is being rounded to 16 months post
upgrade.

The DBA read the PostgreSQL 16 release notes but there was no warning
about this! However ill-advised adding an interval of "a third of a year" to a
timestamptz may be on the part of the untroubled developer, that is exactly
what they were asked to do by the product manager, who in turn was asked
by marketing.

Here, the fault lies with the DBA. What they should have done is read all the
intervening major release notes to identify the changes made between
Postgres 13 and 14, 14 and 15, and finally 15 and 16. Even though skip-
upgrading is possible and even desirable, due diligence dictates that you
should go through the entire set of release notes. If our DBA had done this,
they would have discovered that this change was introduced with
PostgreSQL 15, and they would have saved time and effort.

The performance and behavior of PostgreSQL features can change in subtle
ways between major releases. In this case, the fractional interval specified in
years was previously getting truncated, resulting in an expiry date of April
1st, whereas from version 15 onwards it is getting rounded to the nearest
month, giving us an expiry of May 1st.

The PostgreSQL 15.0 release notes from 2022-10-13 state:

When interval input provides a fractional value for a unit greater than

 months, round to the nearest month (Bruce Momjian)

Note

Fractional input to interval is explained here in the Postgres docs:
https://www.postgresql.org/docs/current/datatype-
datetime.html#DATATYPE-INTERVAL-INPUT

What can we learn from this? Well, we can learn that ambiguity in code
applying discounts can cost us money, but the more salient point is that

upgrading without accounting for all the changes in behavior between two
releases can result in all sorts of corner cases manifesting that are not
immediately obvious after the upgrade. Bypassing the intervening release
notes when you are skipping over even one version is not harmless because
one of the releases in between may have introduced a breaking change that
you will be unaware of. What you may have missed can take costly time to
diagnose and fix later.

Take a look at the PostgreSQL release timeline below, and note how many
minor versions are released throughout the lifetime of each major version:

Figure 10.1 A graphical representation of the PostgreSQL release timeline. Generated from data
available under the Creative Commons Attribution-ShareAlike 4.0 License using
https://en.wikipedia.org/wiki/Template:Timeline_PostgreSQL.

The bottom line is that if you have not read all the release notes between the
original and target versions, you have committed a serious upgrading
mistake. Make sure to pay attention to function deprecations or changes in

name, changes to configuration and default settings, and SQL syntax updates.

10.2 Performing inadequate testing

The mistake in the previous section "Not reading all release notes" would
have been caught had more rigorous testing taken place before the upgrade.
Let us now look at another case where not testing enough before upgrading or
migrating can catch you out.

Frogge Emporium, when upgrading from PostgreSQL 11 to 12, started
noticing some performance issues. Specifically, one of their queries (that we
saw in the section "Not using CTEs" of Chapter 2 "Bad SQL usage")
compiles a list of customer emails who have been notified that they have an
unpaid invoice for services (not purchased items). In their monitoring tool, it
looks like this query is performing worse, which is a surprise. Didn’t we say
elsewhere in this book that code that was written for PostgreSQL 11 will
work fine in PostgreSQL 12?

Frogge is intrigued and decides to investigate so they set up one Postgres
installation running on version 11 and another on version 12, to run
comparative tests. They decide to run the same query through EXPLAIN
ANALYZE on both instances, in an attempt to detect any differences.

On the PostgreSQL 11 instance, they run this:

EXPLAIN (ANALYZE, COSTS OFF, TIMING OFF)

 WITH unp AS (

 SELECT id, customer c, order_group AS og

 FROM erp.invoices

 WHERE paid = false

),

 ni AS (

 SELECT og.id

 FROM erp.order_groups og

 JOIN erp.orders o ON o.order_group = og.id

 WHERE o.item IS NULL

)

 SELECT DISTINCT email

 FROM erp.customer_contact_details ccd

 JOIN unp ON unp.c = ccd.id

 JOIN ni ON ni.id = unp.og

 JOIN erp.sent_emails se ON se.invoice = unp.id

 AND se.email_type = 'Invoice reminder';

The execution plan that results can be seen below, somewhat abridged:

 QUERY PLAN

--

 HashAggregate (actual rows=9 loops=1)

 Group Key: ccd.email

 CTE unp

 -> Gather (actual rows=1350 loops=1)

 Workers Planned: 2

 Workers Launched: 2

 -> Parallel Seq Scan on invoices (actual rows=450 loops=3)

 [...]

 CTE ni

 -> Gather (actual rows=1350 loops=1)

 Workers Planned: 2

 Workers Launched: 2

 -> Nested Loop (actual rows=450 loops=3)

 -> Parallel Seq Scan on orders o (actual rows=450 loops=3)

 [...]

 -> Index Only Scan using order_groups_pkey on order_groups

 og (actual rows=1 loops=1350)

 [...]

 -> Merge Join (actual rows=9 loops=1)

 Merge Cond: (unp.og = ni.id)

 [...]

 -> Hash Join (actual rows=1350 loops=1)

 Hash Cond: (unp.id = se.invoice)

 -> Hash Join (actual rows=1350 loops=1)

 Hash Cond: (unp.c = ccd.id)

 [...]

 Planning Time: 0.216 ms

 Execution Time: 50.033 ms

We can see that the two CTEs caused parallel table scans, and their filtered
results were made available for subsequent HashJoins and finally a
HashAggregate for grouping, both of which are relatively fast operations for
large datasets. The query’s execution time was 50 ms.

They then run the same EXPLAIN statement on the PostgreSQL 12 instance,
and are surprised to see a different execution plan for the same query!

 QUERY PLAN

--

 Unique (actual rows=9 loops=1)

 -> Sort (actual rows=9 loops=1)

 Sort Key: ccd.email

 Sort Method: quicksort Memory: 25kB

 -> Nested Loop (actual rows=9 loops=1)

 -> Nested Loop (actual rows=9 loops=1)

 [...]

 -> Parallel Hash Join (actual rows=3 loops=3)

 Hash Cond: (o.order_group =

invoices.order_group)

 -> Parallel Seq Scan on orders o (actual

rows=450 loops=3)

 [...]

 -> Parallel Hash (actual rows=450 loops=3)

 [...]

 -> Parallel Index Scan using

invoices_pk on invoices (actual rows=450 loops=3)

 [...]

 -> Sort (actual rows=1347

loops=3)

 [...]

 -> Seq Scan on

sent_emails se (actual rows=1350 loops=3)

 Filter: (email_type

= 'Invoice reminder'::email_type)

 [...]

 Planning Time: 0.538 ms

 Execution Time: 85.025 ms

The PostgreSQL 12 query plan is different: there’s no mention of CTEs and
there are two levels of nested loops. The inner nested loop performs an index
scan, which means that the index is scanned multiple times because of the
outer loop. The filtering also happens after the joins, which means that what
we don’t need is eliminated later, after processing more data. Finally, the
results are sorted and then passed through Unique. As a result, the query now
takes 85 ms to run.

It looks like Postgres has inlined the CTEs and subsequently went down a
different execution path. This doesn’t necessarily mean that this query plan is
worse in all cases, but it so happens that, in this case, it’s slower.

As we previously mentioned, the behavior of PostgreSQL features can
change in subtle ways between major releases, and this is one of these cases.

Starting with Postgres version 12, CTEs began to be automatically inlined
when they are referenced just once in the query, as long as they are not
recursive and have no side effects.

Something else that changed between releases 11 and 12, and caught out a
number of people, was that Just-In-Time (JIT) compilation was enabled by
default. This caused some already fast and optimal queries to become slower
by default, as Postgres needlessly spent CPU time trying to optimize them
further with JIT. If regression tests are not performed with the actual queries,
and using version 11 as the baseline, then this sort of slowdown is hard to
catch. The reason why it’s needed to test the queries themselves is that they
may happen to cross the jit_above_cost threshold that triggers the
automatic JIT optimizer.

What both of these examples tell us is that, instead of assuming that a
successful upgrade means that everything will work as expected, you need to
do the due diligence to thoroughly test your application and code with the
new release. As PostgreSQL can introduce optimizations and behavior
changes in the pursuit of ever faster performance, this can lead to completely
different execution plans and can have a significant impact on the
performance of your queries.

It’s important to test your queries with real-world data (or as realistic as is
feasible) to detect potential issues. Otherwise, there’s simply no guarantee
that everything in your upgraded system will behave the same way. Ideally,
this testing should be performed in a staging environment before upgrading
your production system, and it should include all your critical queries and
known edge cases. pg_upgrade can be a useful tool for these testing dry runs.
Finally, make sure to also test under load as a stress test can reveal how
overall performance can be affected by the upgrade.

10.3 Succumbing to encoding chaos

It has become common for organizations to move from other database
platforms to PostgreSQL. One of the usual migrations is from MySQL or
MariaDB to Postgres, and this is what the proverbial database administrator
has been tasked with in the following case. Their organization’s database is

substantial and contains years of accumulated data, including personal
information with international names utilizing various special characters.

The DBA felt that this would not be a difficult migration, as the software
used standard SQL, and had been tested and found to be totally compatible
with PostgreSQL. The DBA began by performing a dump to export the
MySQL database into an SQL file. The next step, predictably, was to import
this dump file into Postgres:

psql service=staging -f prod_dump.sql

They were shocked to find that the terminal started filling with errors of this
sort:

ERROR: invalid byte sequence for encoding "UTF8": 0xe9

How was that possible? Unicode (UTF-8 in this case) should be able to deal
with all the names in the database, as it supports international characters.
Doing a little digging by finding the data row that caused the error, the DBA
determined that 0xe9 is the hex value of the "Latin 1" code for the character
é.

Looking into it further, the DBA found that the MySQL release they were
using when the application went live was using latin1 as the default
encoding. Even though it had since been upgraded to a version that uses
utf8mb4 as the default encoding, the database kept using latin1 as its tables
had never been explicitly converted.

What is utf8mb4, you ask? Why is the MySQL default not utf8? It all goes
back to MySQL’s utf8 being a flawed UTF-8 implementation that only
supports up to three-byte characters. This means that it can’t encode many
international Unicode characters or emoji. As this was not a true UTF-8,
eventually the utf8mb4 encoding that supports four-byte characters was
added to MySQL. Instead of fixing the bad implementation, MySQL chose to
add a confusing non-standard name for the very well-understood UTF-8
encoding, while keeping around its old unsuitable utf8 for backward
compatibility.

After converting the latin1 dump into UTF-8 characters, the DBA retried

the import, only to fail again with a new complaint from PostgreSQL:

ERROR: invalid byte sequence for encoding "UTF8": 0x00

It seems that some of the data contained null characters, also known as the
ASCII NUL character, represented by hexadecimal zero \x00 or octal \0. By
referring to the PostgreSQL documentation, we can find the explanation:
"The character with the code zero cannot be in a string constant".

This is another pitfall to be aware of — just because another data source or
database (in this case, MySQL) accepts strings containing the NUL character it
doesn’t mean that these strings will be accepted in PostgreSQL, even in the
hyper-flexible UTF8 encoding.

The mistake that was made here was not accounting for character set and
encoding differences between MySQL and PostgreSQL. By not determining
the correct source and target encodings, and performing any necessary
conversion during the migration, we faced "invalid byte sequence" errors.
Additionally, by not properly handling illegal characters in the source data,
we faced more import failures.

Some of these key differences to be aware of:

PostgreSQL defaults to UTF8 and strictly enforces valid UTF-8 encoding
while rejecting characters made up of invalid byte sequences and ASCII
zeros.
Older versions of MySQL and MariaDB default to latin1, which is also
known as ISO-8859-1 or Windows-1252 code page, while newer
versions may default to utf8 or utf8mb4. As we said, these DBMSs'
utf8 has up to three bytes per character, which means that it is missing
support for a lot of Unicode characters.
Oracle’s UTF8, from version 8.1.7 onwards, means only "Unicode
revision 3.0", so full current UTF-8 support requires the use of yet more
strangely-named encodings, such as AL32UTF8.
Microsoft SQL Server text support, predictably, is focused on Windows
code pages. Since SQL Server 2012, Unicode support is provided via the
NVARCHAR data type, which uses the UTF-16 encoding. UTF-8 support was
only introduced with SQL Server 2019.

Oversights of differences like these can jeopardize migration efforts, not only
because they cause delays, but because they may compromise data integrity
by causing unseen data corruption. For example, if the target encoding
decides to accept characters that it can then no longer decode correctly back
to their original form, data may be lost irrevocably.

A safe data migration path would be to:

1. Identify the source encoding.
2. Export the data using that same encoding.
3. Convert the data to UTF-8. An example using the UNIX tool iconv:

iconv -f latin1 -t utf8 prod_dump_latin1.sql -o prod_dump_utf8.sql

4. Clean the data by removing characters that PostgreSQL cannot accept.
For example, removing null bytes using UNIX tools tr or sed:

tr -d '\000' < prod_dump_utf8.sql > prod_dump_clean.sql

sed 's/\x0//g' prod_dump_utf8.sql > prod_dump_clean.sql

5. Ensure that the target database is configured to use the UTF8 encoding
and an appropriate collation, like so:

ENCODING = 'UTF8'

LC_COLLATE = 'en_US.UTF-8'

LC_CTYPE = 'en_US.UTF-8'

6. Import the cleaned data.

Finally, and we really shouldn’t have to say this again, test thoroughly using
real or realistic data before proceeding with any conversion and migration.

Tip

Tools like pgloader and ora2pg can help with the migration task by
managing character sets and converting the data automatically. You can find
pgloader at https://github.com/dimitri/pgloader and ora2pg at
https://github.com/darold/ora2pg.

10.4 Not using proper BOOLEANs

Another mistake, somewhat related to the previous one, that people often
make is failing to pay attention to how boolean values are used inside their
database. A quick example that parallels the migration woes we saw in the
previous section "Succumbing to encoding chaos" would be to export a table
that contains booleans from, let’s say, MariaDB. The table definition is:

CREATE TABLE Election2024 (

 VoterID INT AUTO_INCREMENT KEY,

 Voted BOOLEAN NOT NULL DEFAULT false

);

Our good DBA exports the table and attempts to load it into PostgreSQL.
What ensues is this:

psql:prod_dump.sql:24: ERROR: column "Voted" is of type boolean but

 expression is of type integer

LINE 1: ... "Voting"."Election2024" ("VoterID", "Voted") VALUES (500, 0);

 ^

HINT: You will need to rewrite or cast the expression.

Wait a minute — the table column Voted is defined as BOOLEAN. Let’s see
what MariaDB says when we ask for the table definition:

DESCRIBE Election2024;

+------------+------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+------------+------------+------+-----+---------+----------------+

| VoterID | int(11) | NO | PRI | NULL | auto_increment |

| Voted | tinyint(1) | NO | | NULL | |

+------------+------------+------+-----+---------+----------------+

Oops! It turns out that MariaDB as well as MySQL store BOOLEANs as
TINYINT(1) internally. A quick look at these databases' documentation for
types BOOL/BOOLEAN confirms it:

These types are synonyms for TINYINT(1). A value of zero is
considered false. Non-zero values are considered true.

This is hardly a standard boolean representation! It means that we can’t
import such numeric data before converting it to proper SQL BOOLEAN values,
as PostgreSQL believes that the literal integer values exported are… integers.

Other database systems also have this issue:

In Microsoft SQL Server, it’s common practice to use the bit data type
that can take values 0, 1 and NULL to represent booleans.
IBM DB2 only started supporting BOOLEAN as a column type after
version 11.1.1.1, released just in 2016. However, it will happily accept
the string values '0' and '1', as well as the numbers 0 and 1, in such
columns.
Historically, Oracle has lacked comprehensive support for the BOOLEAN
data type. Early on, it was standard practice to use CHAR(1) to store Y
and N for "yes" and "no" (Anglocentric much?). Later, most people
switched to using NUMBER(1) instead. Shockingly, support for BOOLEAN
was only added with version 23c, released in 2023.

PostgreSQL provides proper support for the SQL standard BOOLEAN type,
making true and false first-class citizens. Its strict adherence to the standard
means that means that other values cannot be stored in booleans.

If the column you are migrating is originally defined as BOOLEAN but holds
non-standard values, you will need to convert these character or numeric
values into true and false in the dump file to be loaded for the PostgreSQL
native boolean type to ingest them correctly.

Even if the columns are defined as pseudo-boolean numeric or character
types in the other database, there is no reason to continue this charade inside
PostgreSQL. Be aware that queries that implicitly expect a boolean may fail
due to the type mismatch. To ensure consistency and standard-compliant
behavior, convert these columns to boolean after the data load.

Let’s say the table looks like this after the migration:

 Table "Voting.Election2024"

 Column | Type | Collation | Nullable | Default

---------+---------+-----------+----------+------------------------------

 VoterID | integer | | not null | generated always as identity

 Voted | integer | | not null | 0

Indexes:

 "Election2024_pkey" PRIMARY KEY, btree ("VoterID")

And we have values such as the following:

 VoterID | Voted

---------+-------

 500 | 0

 501 | 1

We can then run the following conversion:

ALTER TABLE "Voting"."Election2024" ALTER "Voted" DROP DEFAULT;

ALTER TABLE "Voting"."Election2024" ALTER "Voted" SET DATA TYPE BOOLEAN

 USING CASE WHEN "Voted" = 1 THEN true ELSE false END;

ALTER TABLE "Voting"."Election2024" ALTER "Voted" SET DEFAULT false;

After the conversion has been completed, our table looks like this:

 Table "Voting.Election2024"

 Column | Type | Collation | Nullable | Default

---------+---------+-----------+----------+------------------------------

 VoterID | integer | | not null | generated always as identity

 Voted | boolean | | not null | false

Indexes:

 "Election2024_pkey" PRIMARY KEY, btree ("VoterID")

We can see that the data inside is now properly stored:

 VoterID | Voted

---------+-------

 500 | f

 501 | t

To recap, if you want to avoid issues when migrating between databases,
make sure that your boolean columns use standard BOOLEAN types and convert
non-standard pseudo-boolean values (like integers or characters) to true and
false in the data.

10.5 Mishandling differences in data types

We’ve already discussed some of the pitfalls you can encounter when moving
from one DBMS platform to another in the preceding sections, so we’re
going to keep this one short and sweet.

Databases like MySQL/MariaDB, SAP Sybase/Microsoft SQL Server,

Informix, and others use the non-SQL-standard DATETIME type to store a date
and time, in a TIMESTAMP-LIKE way. However, it’s done inconsistently — for
example, accuracy-wise, some databases support fractional seconds, others
offer accuracy approaching "a few" milliseconds, and others exact
milliseconds or fractions thereof. Another inconsistency is that some
databases accept nonsense DATETIMEs into columns of this type; for example,
MySQL/MariaDB seem happy to gobble up whatever invalid date you throw
at them in non-strict mode (that used to be the default for a long time).

Finally, and most damningly, if you try to convert most of these DATETIMEs to
PostgreSQL’s SQL-compliant type TIMESTAMP WITH TIME ZONE you will
unfortunately find out that the above implementations don’t support time
zones and should be treated as naive (local) timestamps. For more on why
that is a bad thing, and why you should not use TIMESTAMP (WITHOUT TIME
ZONE), please refer to the corresponding section in Chapter 3.

Inexplicably, some databases such as Oracle use the DATE data type to store
date AND time information, but restricted to an accuracy of one second only!
(Oracle’s TIMESTAMP data type also stores date AND time information but
does include fractional seconds).

This goes beyond date/time types as well. NUMBER in Oracle can store both
integers and floating-point values, but PostgreSQL requires you to
distinguish between numeric, integer, and float/double precision types
explicitly. Mapping the data types improperly can result in loss of precision
or incorrect calculations.

All of this tells us that you can never rely on the name to tell you what a data
type stores and that there are wild inconsistencies out there among DBMSs 
— possibly because of (unfortunate) design choices early on in their
development process. Do not assume that data types sharing the same name
are directly compatible with each other, and always check their definition and
behavior in the relevant documentation. Use PostgreSQL’s data type
conversion functions to ensure compatibility, and take advantage of
migration tools such as pgloader and ora2pg.

10.6 Summary

Always read the release notes for all versions between your current and
target PostgreSQL versions before upgrading. Neglecting to do this can
lead to unexpected behavior because of new optimizations or breaking
changes that are time-consuming to diagnose and fix.
PostgreSQL upgrades can introduce subtle changes in behavior or
performance that may add up to become a problem in the end.
Thoroughly test your application and queries in a staging environment
before upgrading, and use realistic data and workloads to uncover
potential issues early.
Neglecting to address character encoding differences and disallowed
characters during a database migration can lead to import errors or even
data loss. When migrating between different RDBMSs, make sure to
properly specify character encodings and the corresponding conversion
between them, and clean the data from things such as ASCII nulls.
Migration tools can help with this task.
When migrating boolean data to PostgreSQL, ensure it uses the proper
boolean type. Convert non-standard representations (e.g., integers or
characters) to true and false to maintain consistency and avoid type
mismatch errors.
Inconsistencies in data type naming, functionality, and precision across
DBMSs can lead to migration errors. Always verify and understand data
type definitions and behavior and use PostgreSQL’s conversion tools
and migration utilities to ensure compatibility.

11 Conclusion
In this chapter

Exploring how common user profiles shape PostgreSQL mistakes
Planning proactively to avoid technical debt and problem escalation
Approaching and improving a poorly designed inherited PostgreSQL
database
Using PostgreSQL thoughtfully to improve performance and reliability

11.1 What type of user are you?

Having discussed errors and potential mishaps at length, it’s now time to take
a step back and look at the PostgreSQL experience from a distance for more
perspective. One of the reasons why PostgreSQL means so much and is loved
by so many different kinds of users is that it can cater to their varied
requirements. And yes, PostgreSQL users are not all the same — this much is
obvious. From professional experience and talking to people at conferences
alike, it’s become clear to me that there is a vast range of people doing all
sorts of different stuff with our database of choice, and more use cases crop
up every day!

When someone shares a Postgres success story, that is really cool because
you get to learn about a new or different use case. When someone shares a
story of trying and failing to make something work using Postgres, that is
equally interesting — because understanding the underlying reasons for the
failure is important for avoiding similar scenarios and seeking alternate paths.
Incidentally, that is the whole premise of reliability and safety engineering,
and the whole culture that surrounds the discipline.

Reliability and safety culture teaches us that mistakes can occur as a
consequence of human error, failure of processes, insufficient training, or
simply through misunderstanding or miscommunication. In this book, we
have seen errors that can be ascribed to pretty much any of these factors.

Let’s recognize that not all PostgreSQL users are the same and that the user
role they occupy in their organization will give them a particular alignment or
bias in the way they approach database usage. This way, we can appreciate
how their specific focus can lead them to fall prey to mistakes that might be
otherwise caught with a multi-faceted look at the problem from an objective
standpoint.

Here are some kinds of users and their characteristics — by no means an
exhaustive list, but based on observation. PostgreSQL may be involved in the
background as part of a professional picture, or in an academic or home
setting:

11.1.1 The dabbler

You are a "full-stack" developer or data engineer. As part of your passion for
exploring relevant technology, you come across PostgreSQL through word-
of-mouth or articles extolling its virtues (or books such as this one)! You may
even be an enthusiast working on a personally-led database project. Deciding
to see what the fuss is all about, you start looking into how to use Postgres for
your data retrieval or research needs, and it seems to fit the bill.

However, it doesn’t seem to scale as well as you had been told it would. It
also doesn’t seem to integrate well with the tools you’ve been using so far.
Two paths lay out in front of you: you can dive into PostgreSQL head-first,
and focus on learning all you can around this technology and ecosystem to
achieve your goal, or give up and look for an "easier" solution that you don’t
have to tweak to get results.

The first path can lead to gaining deep knowledge about the database and
ecosystem, and you can come out the other end a consummate professional or
well-informed enthusiast who will — at least — be an expert in this specific
area. The second path may indeed uncover some wonder tool that "just
works", but in many cases leads to a technology that promises the world but
only really covers two-thirds of your use case, and you have to come up with
the rest through custom code or manual data munging.

What effectively determines the outcome of each path, is what you really

want to use PostgreSQL for. Is the use case even valid for relational or
document (JSON) databases? Then, most likely, you can find a way to make
everything work fine. Are you relying on a different data paradigm, such as
graphs, MapReduce, or specific data formats such as Parquet/Iceberg? Then,
your success may hinge on third-party code such as extensions and Change
Data Capture (CDC) or other data transformation or replication tools.

Looking for "the right tool" may turn out to be the fruitless pursuit of
perfection. If you know any data professionals, you’ll have noticed that what
they care about the most is the accuracy and correctness of their data. They
do appreciate ease of use, but only in a relative way. They know enough to
not care about a couple of extra clicks, as long as there’s a promise that, at the
end of the process, they’ll have a stable source of truth and a method that
extracts and analyzes the data reliably.

This theoretical "dabbler" may be prone to misusing PostgreSQL features or
data types, forgoing SQL conventions and best practices, and
misunderstanding (or even skipping entirely) the documentation in search of
quick-and-dirty solutions that will yield quick results. As we saw in Chapters
2 (Bad SQL usage) and 3 (Improper data type usage), such shortcuts can lead
to significant problems down the line.

11.1.2 The cautious steward

You are a stalwart database administrator and the protector of data in your
realm. You know all about best practices because you were the best in your
database class or because you’ve been successfully navigating those waters
for the past several years. You may be an experienced devops engineer or
Site Reliability Engineer (SRE).

However, there are things that can stump you — a developer asks to use
JSON(B) for non-relational data storage, and others reach out to you about
distributed technologies, event buses and stream processing. Invariably, you
put them back in their place, because PostgreSQL is a relational database, and
it’s being used in production. Any of these newfangled things may jeopardize
the integrity of the data through their lack of an ACID implementation, or
impact the system’s performance through excessive querying or replication

demands, and the list goes on. In your relentless focus on the core tenets of
database administration, you may have missed out on the latest PostgreSQL
features or emerging data technology trends.

This "cautious steward" may be prone to sticking with what they know
through their exposure to another database system, or practices that are
outdated, such as relying on logical dump and restore for backups. Their
reluctance to try out new or PostgreSQL-specific features (see Chapter 4:
Table and index mistakes) may lead them to inflexibility and missing out on
efficiencies and synergies with new technologies. As we pointed out in
Chapter 7 (Administration bad practices), not keeping up with the latest and
greatest — including not upgrading — can paint you into a corner.

11.1.3 The oblivious coder

You may not even know — or care — that you are using PostgreSQL
underneath it all, down in the "data layer". The database is something that is
provided to you, and "should just work" with your platform of choice, be it
language or framework. All you ask for is one database connection (or a few
thousand connections, for that matter). As far as you’re concerned, the
database is of secondary importance to your task, and the "database people"
are obliged to deal with whatever your application or Object-Relational
Mapper (ORM) throws their way.

You may be interested in AI and want to explore vectorization and
embeddings. Or you may have other specialized uses in mind, like GIS using
PostGIS, or other types of specialized extensions that add sets of features to
PostgreSQL. However, your narrow focus on these things may not let you see
the bigger picture that, in the end, there’s a database system out there holding
and processing your data. Alternatively, you may be relying too heavily on
your ORM and programming framework, and not enough on the core
strengths of relational databases.

Often called the naive (or parametric) end user, the "oblivious coder" can be
prone to basic data retrieval or SQL language errors if the SQL interface is
exposed to them, such as N+1 queries and filtering in the application. If you
recall, we discussed these types of issues in Chapter 6 (Performance bad

practices). This is the type of user that is liable to code serialization
anomalies inside their application or use text strings to store dates if left to
their own devices. Reestablishing context to see how everything is connected
and how all components can work optimally together usually helps.

11.1.4 The freefaller

You have been thrust into an unenviable position: You have been dropped
into the middle of the operations circle of a highly complicated system, or
you are very familiar with RDBMSs but not PostgreSQL in particular. After
all, how different can this system, or PostgreSQL be from what you’ve
encountered before?

Of course, the answer can be "VERY". There’s a huge variety of Postgres
users out there in the industry and, through custom code, it can occupy niches
your average person has not even thought about. All these specializations and
workflows often require particular morsels of expertise, such as knowing that
tables with a high frequency of updates will require an aggressive
autovacuum configuration. This means that you may be overwhelmed by the
complexity of what has been set up or the PostgreSQL features and
techniques that are in use. Not asking for help or clarifications, out of pride or
the desire to show that you’re on top of things, can incur risks.

The "freefaller" may be prone to blindly following blog posts that roughly
correspond to what has been asked of them, or describing and delegating the
task to an LLM, with dubious results. As with every powerful tool, LLMs can
be wonderful in the right hands but can be dangerous if you don’t know what
you are doing. Feeling they are in freefall, they may succumb to task fixation,
making them less aware of the necessity of applying best practices at all
times, especially regarding security and reliability — remember Chapter 9
(High availability bad practices).

These descriptions of hypothetical users are not meant to be negative
stereotypes but are rather aimed at provoking thought as starting points for
self-reflection. Identifying your specific needs as a PostgreSQL user, and
acknowledging the expectations, restrictions, conventions and biases tied to
your organizational role or alignment are important for self-awareness. Once

you know what your particular characteristics are as a database user, you can
better understand what comes naturally to you, but also points you need to
pay attention to. It’s not about pigeonholing yourself as a particular user type,
but about recognizing your strengths and weaknesses when it comes to
effective PostgreSQL use on your journey to achieving good outcomes.

Embracing your particulars, aligning your practices with the responsibilities
of your role, and leveraging this heightened awareness to learn more or seek
guidance from peers can help you prevent mistakes.

11.2 Be proactive, act early

In the world of database management, every decision you make can
potentially have cascading effects on performance, reliability, and
maintainability. A well-maintained PostgreSQL database does not come
about as the result of frantic firefighting efforts but rather through careful
examination of issues and forward-thinking planning.

If you notice that a query is a bit slow or is performing worse than before, it
means something. Take it as a warning signal that has to be acted upon
immediately. Don’t wait until:

Performance nosedives to start optimizing queries or introducing
indexes.
You lose data to start implementing a robust backup strategy.
Your server goes down to establish and test redundancy and high
availability measures.
You require a feature from a newer PostgreSQL release to hastily plan
an upgrade.
You start running out of primary key IDs to start looking for a solution
for your key column.
Your table balloons to gigabytes of bloat before you assess and adjust
autovacuum settings.
You accumulate a billion rows in your table to realize that it is necessary
to partition it.
Hardware or cloud provider costs skyrocket before you think about
optimizing your database.

When you see these scenarios spelled out, they seem like pretty
commonsense actions that any DBA worth their salt would take. And yet,
there are constantly new examples of these things getting overlooked time
and time again. Often, too much focus on short-term deliverables can detract
from long-term stability and performance.

Being vigilant is the first step towards being proactive:

Review developer code to catch mistakes and inefficiencies.
Notice data access patterns that may become future bottlenecks.
Examine database usage patterns to identify anomalies or spots for
improvement.

Plan your course of action. Test the proposed solution and apply it to a
staging environment that mirrors production as closely as possible. Then, roll
it out at your own pace, with plenty of time to spare.

Nobody wants to see an issue potentially escalate into a disaster, and being
proactive protects you against that. When the focus is on rapid development,
many considerations can be deferred or neglected. However, applying best
practices, and planning for scalability, performance, and maintainability are
activities that start at day one. This way, you can minimize or even eliminate
technical debt. By worrying about predictable challenges and acting on those
early on, you can prevent them from coming back to haunt your database in
the future.

You are not alone in all this: leverage the PostgreSQL ecosystem to your
advantage. Tools for high availability readiness, backing up, monitoring and
alerting and statistics analysis and visualization provide numerous ways to
have early warning and address potential issues before they disrupt
operations.

Finally, commit to continuous learning. Stay current on PostgreSQL and
adjacent technologies, and allocate time for training (even in the form of
informal knowledge-sharing sessions). Participate in the PostgreSQL
community through public fora and events. By staying informed, you can
expand your horizons and learn from other people’s experiences. Isn’t this
part of why you are reading this book?

Spearhead and cultivate a culture that values foresight and preparation.
Encourage your peers and team members to think ahead, share insights, and
exchange knowledge.

11.3 All right, so you inherited a bad database

It’s a common story: you join a project and discover that the state of its
database leaves much to be desired. However, it’s not the end of the world — 
let’s explore why.

11.3.1 "Historical reasons"

Sometimes, it happens that you have to manage databases designed by your
predecessor. Sometimes it even happens that the team used to not have a
DBA. Those "hysterical raisins" can lead to disheartening discoveries, such
as finding an SQL_ASCII database.

The database you inherit may be a house of horrors — it might be a result of
questionable decisions, rushed deadlines, or architectural arrogance. What
you have to remember is that whoever built it may have been using all the
tools and knowledge they had at their disposal at the time and that this mess
may have developed out of an organic growth of the code base and dataset.

11.3.2 What now?

What do you do now, when there are so many things to sort out? Instead of
panicking, refer back to the old adage: "Never let a good crisis go to waste".
Savor the opportunity to start fixing things before they have actually
imploded, and learn from this journey.

There may be many things wrong with the system — bad encoding or object
naming choices, overly broad tables with hundreds of columns and multiple
uses, too many narrow tables, an ineffective multi-tenancy design with lots of
repetition, or spaghetti code. They may have ignored the basics, such as
normalizing, enforcing data integrity or creating indexes.

Take a deep breath, remember that you are not alone, and that these are

solvable problems. First of all, see if anything is on fire — ask those working
with the system for the major pain points, and they will be all too happy to
share them with you. They may complain about things working slowly,
running out of disk space all the time, or having to reboot frequently because
the server runs out of memory.

If there is something you can do to address significant known failure points,
take those easy wins, and buy yourself some time to improve the system
incrementally and more systematically. Remember not to fall into the trap of
the XY problem, identify what’s wrong, consult best practices, and refer back
to database basics to fix things.

The XY problem

What is known as the XY problem is a common miscommunication where the
user attempts to get someone to help them by describing what they believe is
the solution to their problem ("X") instead of detailing their actual problem
("Y").

11.3.3 First things first

Set out by assessing the situation and mapping the terrain of what you are
dealing with — use pg_dump and other tools such as pgAdmin or DBeaver to
extract, visualize, and examine the schema’s structure. Then, you can start
inspecting the data and its quality by running exploratory queries. This can
help you further understand the nature of the database contents. Look at the
PostgreSQL configuration and ask yourself if it aligns well with what you’ve
found so far. Monitor the database’s logs and performance using
pg_stat_activity, pg_stat_statements, and other relevant tools. This will
uncover hints that can lead you back to the source of the problem, whether
it’s in the application code, database design or configuration, or even the data
ingestion pipeline. Break down the proposed improvements into projects of a
manageable size with measurable goals instead of trying to fix everything all
at once.

Inheriting a bad database isn’t just about fixing what’s broken — it’s also
about futureproofing it. To ensure that your hard work pays off:

Document as much as you can. Keep the documentation of the schema,
relationships, configurations and key contextual notes up-to-date.
Automate as many of the high availability, disaster recovery, and
maintenance processes as you can. We’ve gone over the importance of
this, especially in Chapters 7 (Administration bad practices) and 9 (High
availability bad practices).
Share your list of guidelines and best practices when it comes to
security, schema and query design, and indexing and optimization with
the broader team.

Figure 11.1 A roadmap for systematically assessing, fixing, documenting and improving an
inherited database.

The task of taking over an existing database may feel daunting, but it’s also
an opportunity to make a real impact. Even if you don’t manage to turn it into
the most enviable of data foundations, you can at least turn something that
doesn’t work well into a serviceable, robust and reliable system. Prioritize
repairs and take an incremental approach afterward. By being methodical,
sticking to best practices, and looking ahead, you can make the database
work for you and others, and gain valuable experience.

11.4 Treat Postgres well, and it will treat you well

PostgreSQL is not just a database engine; it’s a versatile powerhouse that has
earned its reputation for reliability and adaptability. But, as with any tool, the
key to succeeding lies in using it properly and treating it well. As a
computational system, Postgres reflects how you interact with it.

This versatility makes PostgreSQL special because it can support a wide
variety of use cases, from complex relational tasks on terabytes of data to
blended paradigms with JSONB data or highly specialized jobs like
geospatial processing. However, this power is also why it requires respect
and care.

As Frogge Emporium navigated the sea of the PostgreSQL ecosystem in the
pages of this book, it learned the fundamental truth of this concept through
experience: it is rewarding to learn from your (and other people’s) mistakes.
When pitfalls are revealed, a roadmap for best practices emerges.

With thoughtful use, PostgreSQL can deliver the goods:

Optimizing your queries, indexing effectively, and configuring the
system properly leads to a responsive and performant system.
Measuring and planning properly allows you to scale your system in
accordance with data and user base growth.
Proactively monitoring performance and performing preventative
maintenance with VACUUM and other methods guarantees stability and
reliability. Chapter 6 (Performance bad practices) talks about the
importance of autovacuum.

Providing security measures, implementing redundancy, and
establishing backup and failover strategies ensures the safety of your
data and operations — refer to Chapters 8 (Security bad practices) and 9
(HA bad practices).
Utilizing Postgres’s advanced and expressive SQL syntax and NoSQL
features gives you the flexibility to choose the right approach for
building your application.

To develop this thoughtfulness, you need to:

Understand your needs. Consider what you are building, and align your
goals with PostgreSQL’s and its ecosystem’s capabilities.
Follow best practices. Create clean designs and schemas, and architect
your system to be safe.
Keep learning. Stay updated on the latest features and extensions, and
stay connected with the community.

In a way, you can treat PostgreSQL like a partner in your database journey. It
can help you a lot, but you have to meet it halfway and respect its
idiosyncrasies. As an example, adhering to proven design patterns and
vacuuming diligently will enhance performance and reliability. When you do
your part, Postgres will work as hard as you do.

Closing this book isn’t the end as the journey with PostgreSQL extends far
beyond these pages. Let the mistakes, solutions, concepts and ideas we
discussed inspire you to continue to explore, learn, and innovate.

11.5 Summary

Misaligning your usage of PostgreSQL with your needs may stem from
a lack of self-awareness and can lead to predictable mistakes.
Recognizing your user profile and role-specific tendencies, biases, and
limitations helps you focus on areas needing improvement to prevent
mistakes and optimize your database interactions. Understanding what
kind of user you are, following best practices, and seeking guidance
allows for a more objective view of potential problems.
Waiting until problems escalate before intervening on performance,

reliability, or scalability is an unnecessary risk. Plan for future growth
and optimize from the beginning to prevent technical debt. Proactive
measures like code reviews and usage pattern analysis, coupled with
regular monitoring and prompt attention to inefficiencies, are crucial and
can save you a lot of trouble.
Inheriting a poorly designed database means you should address major
pain points as a priority before incrementally improving the system.
Systematically assess the database using tools for schema inspection,
data analysis, and performance monitoring. Along the way, document
what you find and what you change, automate processes, share best
practices, and take care to avoid the XY problem.
Failing to recognize PostgreSQL’s requirements, stemming from its
versatile nature, can limit its effectiveness. Use it thoughtfully by
optimizing queries, indexing effectively and through preventive
maintenance to have a performant, stable and reliable system. Stay
informed, and treat Postgres, its ecosystem, and its community as trusted
partners on your data journey. Recognizing common mistakes and
adopting best practices lets you harness PostgreSQL’s potential to build
robust, reliable systems.

Appendix A. Frogge Emporium
database schema
To recreate the Frogge Emporium database and user, run the following in
psql as user postgres:

CREATE USER frogge PASSWORD <password>;

CREATE DATABASE frogge OWNER frogge;

Then you can create the schema by running the file schema.sql as follows
from the command line:

psql -U frogge -f schema.sql

schema.sql can be found at: https://github.com/vyruss/postgresql-mistakes/

The content of schema.sql is below:

CREATE SCHEMA erp;

CREATE SCHEMA audit;

CREATE SCHEMA support;

CREATE SCHEMA test;

-- Customers go in this table.

CREATE TABLE erp.customers (

 id bigint PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 first_name text NOT NULL,

 middle_name text,

 last_name text,

 marketing_consent boolean DEFAULT false NOT NULL

);

-- This is where we hold contact details for customers.

CREATE TABLE erp.customer_contact_details (

 id bigint PRIMARY KEY REFERENCES erp.customers(id),

 email text DEFAULT '' NOT NULL,

 street_address text,

 city text,

 state text,

 country text,

 phone_no text

);

CREATE INDEX ON erp.customer_contact_details (email);

-- We represent order status by an enumeration.

CREATE TYPE erp.order_status AS ENUM (

 'Placed',

 'Fulfilled',

 'Cancelled'

);

-- Order groups aggregate large orders for multiple items.

CREATE TABLE erp.order_groups (

 id bigint PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 status erp.order_status,

 placed_at timestamptz,

 updated_at timestamptz,

 customer bigint REFERENCES erp.customers(id)

);

-- Table to hold orders for individual items or services.

CREATE TABLE erp.orders (

 id bigint PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 order_group bigint REFERENCES erp.order_groups(id),

 status erp.order_status,

 placed_at timestamptz,

 updated_at timestamptz,

 item integer,

 service integer

);

-- Each invoice for an order group goes in here.

CREATE TABLE erp.invoices (

 id bigint PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 amount numeric NOT NULL,

 customer bigint REFERENCES erp.customers(id),

 paid boolean DEFAULT false NOT NULL,

 order_group bigint REFERENCES erp.order_groups(id),

 updated_at timestamptz DEFAULT CURRENT_TIMESTAMP,

 created_at timestamptz DEFAULT CURRENT_TIMESTAMP

);

-- We hold payments for specific invoices in here.

CREATE TABLE erp.payments (

 id bigint PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 tstamp timestamptz NOT NULL,

 amount numeric NOT NULL,

 invoice bigint REFERENCES erp.invoices(id)

);

CREATE INDEX ON erp.payments (tstamp);

-- Our list of suppliers and their details.

CREATE TABLE erp.suppliers (

 id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 company_name text,

 state text,

 country text,

 phone_no text,

 email text

);

-- We represent the type of each email sent by an enumeration.

CREATE TYPE erp.email_type AS ENUM (

 'Invoice reminder',

 'Welcome',

 'Account closed',

 'Happy birthday'

);

-- This table is the history of all emails sent out to customers.

CREATE TABLE erp.sent_emails (

 tstamp timestamptz PRIMARY KEY DEFAULT CURRENT_TIMESTAMP,

 customer bigint REFERENCES erp.customers(id),

 email_type erp.email_type,

 invoice bigint REFERENCES erp.invoices(id)

);

-- This table records energy usage readings for each of the branches.

CREATE TABLE erp.energy_usage (

 branch_id integer NOT NULL,

 reading_time timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,

 reading numeric NOT NULL,

 unit varchar DEFAULT 'kWh' NOT NULL

);

-- This table holds customer service ticket details.

CREATE TABLE support.tickets (

 id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 content text,

 status smallint,

 opened_at timestamptz DEFAULT CURRENT_TIMESTAMP NOT NULL,

 closed_at timestamptz

);

-- Logging of user activity for audit purposes.

CREATE TABLE audit.audit_log (

 id bigint PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

 what text,

 who text,

 tstamp timestamptz

);

2 Frogge Emporium database data

You can populate the database with the data for customers and their contact
details by loading the file customer_dump.sql as follows from the command
line:

psql -U frogge -f customer_dump.sql

customer_dump.sql can be found at: https://github.com/vyruss/postgresql-
mistakes/

Finally, you can create the rest of the data by running create_data.sql as
follows from the command line:

psql -U frogge -f create_data.sql

create_data.sql can be found at: https://github.com/vyruss/postgresql-
mistakes/

The content of create_data.sql is below:

-- Data for suppliers table

INSERT INTO erp.suppliers (company_name, state, country, email) VALUES

('Omni Consumer Products', 'MI', 'United States of America',

 'ocp@example.com'),

('Yoyodyne',null,'Japan','yoyodyne@example.com');

-- Data for orders, order_groups, invoices, payments, sent_emails tables

DO $$

DECLARE _id bigint;

DECLARE _t1 timestamptz;

DECLARE _t2 timestamptz;

BEGIN

SELECT CURRENT_DATE - INTERVAL '1y' INTO _t1;

SELECT CURRENT_DATE INTO _t2;

FOR i IN 1 .. 50000 LOOP

 INSERT INTO erp.order_groups (status, placed_at, updated_at, customer)

 VALUES ('Fulfilled',

 (_t1 + (i * INTERVAL '1 s')),

 (_t1 + (i * INTERVAL '1 s')),

 TRUNC(RANDOM() * 14000 + 1)) RETURNING id INTO _id;

 INSERT INTO erp.orders (order_group, status, placed_at, updated_at,

 item) VALUES

 (_id, 'Fulfilled',

 (_t1 + (i * INTERVAL '1 s')),

 (_t1 + (i * INTERVAL '1 s')),

 TRUNC(RANDOM() * 1000 + 1));

 INSERT INTO erp.invoices (amount, customer, paid, order_group,

 created_at, updated_at) VALUES

 (59.95, (SELECT customer FROM erp.order_groups WHERE id=_id), 't',

 _id,

 (_t1 + (i * INTERVAL '1 s')),

 (_t1 + (i * INTERVAL '1 s')

 + INTERVAL '30 s')) RETURNING id INTO _id;

 INSERT INTO erp.payments (tstamp, amount, invoice)

 VALUES ((_t1 + (i * INTERVAL '1 s')

 + INTERVAL '30 s'), 59.95, _id);

END LOOP;

FOR i IN 1 .. 200000 LOOP

 INSERT INTO erp.order_groups (status, placed_at, updated_at, customer)

 VALUES ('Placed', _t2 - INTERVAL '2 d' + (i * INTERVAL '1 s'),

 _t2 - INTERVAL '2 d' + (i * INTERVAL '1 s'),

 TRUNC(RANDOM() * 14000 + 1)) RETURNING id INTO _id;

 INSERT INTO erp.orders (order_group, status, placed_at, updated_at,

 item) VALUES

 (_id, 'Placed', _t2 - INTERVAL '2 d' + (i * INTERVAL '1 s'),

 _t2 - INTERVAL '2 d' + (i * INTERVAL '1 s'),

 TRUNC(RANDOM() * 1000 + 1));

 INSERT INTO erp.invoices (amount, customer, paid, order_group,

 created_at, updated_at) VALUES

 (59.95, (SELECT customer FROM erp.order_groups WHERE id=_id), 't',

 _id,

 _t2 - INTERVAL '2 d' + (i * INTERVAL '1 s'),

 _t2 - INTERVAL '2 d' + (i * INTERVAL '1 s') + INTERVAL '30 s')

 RETURNING id INTO _id;

 INSERT INTO erp.payments (tstamp, amount, invoice)

 VALUES (_t2 - INTERVAL '2 d' + (i * INTERVAL '1 s') + INTERVAL '30 s',

 59.95, _id);

END LOOP;

WITH o AS (SELECT id FROM erp.orders ORDER BY RANDOM() LIMIT 1350

 FOR UPDATE)

 UPDATE erp.orders SET item = NULL, service = 21

 FROM o WHERE orders.id=o.id;

WITH i AS (SELECT id FROM erp.invoices ORDER BY RANDOM() LIMIT 1350

 FOR UPDATE)

 UPDATE erp.invoices SET paid='f' FROM i WHERE invoices.id=i.id;

WITH i AS (SELECT id, created_at, customer FROM erp.invoices

 WHERE paid='f')

 INSERT INTO erp.sent_emails (tstamp, customer, email_type, invoice)

 SELECT i.created_at + INTERVAL '1 d', i.customer,

 'Invoice reminder', i.id FROM i;

END $$ LANGUAGE plpgsql;

-- Data for tickets table

INSERT INTO support.tickets (status, content, opened_at, closed_at)

 SELECT 20, 'issue text',

 CURRENT_DATE - INTERVAL '2y' + n * (INTERVAL '1 m'),

 CURRENT_DATE - INTERVAL '2y' + n * (INTERVAL '1 m') + INTERVAL '1 d'

 FROM generate_series(1,1000000) n;

INSERT INTO support.tickets (status, content, opened_at)

 SELECT 10, 'issue text',

 CURRENT_DATE - INTERVAL '1y' + n * (INTERVAL '1 m')

 FROM generate_series(1,500) n;

Appendix B. Cheat sheet
Bad SQL usage

Don’t use NOT IN to exclude a list of values that can include even one null,
because that will return an empty result set. Consider the use of NOT EXISTS.

Filtering with BETWEEN, for example between two timestamps, can return
overlapping results in subsequent queries because its ranges are inclusive.

CTEs can not only improve readability of queries but also improve
performance, by letting the optimizer decide to merge and reorder parts of
the query.

Quoting identifiers makes them case-sensitive, while the Postgres
convention is for all identifiers to be case-insensitive, and this can lead to
reduced usability and errors.

Performing division between integers will yield an, often unexpected,
truncated integer result.

count() ignores NULL values so if you count a nullable column, you won’t
get the number of rows returned but the number of rows that didn’t have
NULL in that field.

When you query indexed data that has had a data transformation
applied to it, Postgres may not use the index at all.

Avoid using nullable columns in composite unique keys when possible.
PostgreSQL 15 introduces NULLS NOT DISTINCT to address issues with
upserts but you should probably use a cleaner design.

Don’t slow down your queries by selecting more than strictly necessary,
and don’t fetch more data than you need to the application side — do your
filtering and data management operations on the database side.

Use tools to check and lint your SQL for correctness and potential impacts
to production, and take advantage of generative AI to make your work
easier — but be aware of the limitations and always recheck and have the
final say.

Improper data type usage

There is no benefit to using TIMESTAMP (WITHOUT TIME ZONE), as it can
lead to time calculation errors due to lack of time zone and DST context.
TIMESTAMP WITH TIME ZONE is the proper data type for recording
timestamps as specific moments in time.

TIMETZ and CURRENT_TIME have questionable usefulness because time
zones have no meaning without the context of dates. Again, it is preferable
to use TIMESTAMPTZ even if we don’t need to display the date part of the
timestamp.

MONEY doesn’t store which currency, it suffers from a limited and flawed
implementation, and should be avoided in favor of using NUMERIC or other
number formats that can accurately store exact values, potentially in
conjunction with storing the currency as a separate column.

The two serial types SERIAL and BIGSERIAL have been effectively
superseded by identity columns, which have more predictable behavior
when it comes to role ownership and use of sequences, and clarity regarding
which table the sequence belongs to.

You don’t save storage space by using the limited character types CHAR(n)
and VARCHAR(n), and the whitespace stored with CHAR(n) can be
detrimental to performance. Additionally, you run the risk of running into
SQL quirks and painting yourself in a corner with maximum lengths — TEXT
is the better choice.

XMLis a terrible choice for document storage, unless you’re just copying
immutable XML data inside the database — if you intend to
query/manipulate the data, you should use JSON(B).

Table and index mistakes

If you discovered table inheritance and you think you need it, you’re
probably wrong. Implement the parent-child relationships with foreign
keys and triggers if needed.

You can leverage table partitioning to make management and
maintenance of large tables easier, and speed up the queries hitting those
tables.

Take care when sub-partitioning because partitioning by multiple keys is
not the same thing. Unfortunately, it is not obvious from the documentation
what the multiple key partitioning syntax does, when best to use it, and what
its implications are.

Each index type offered in PostgreSQL has its strengths and weaknesses.
By adapting your indexing plan to the type of data you have and type of
queries you need to run, you can optimize performance and storage space.
When you get it right, your queries can run orders of magnitude faster.

Improper feature usage

SQL_ASCII is not a character encoding so much as the absence of one. If
you don’t want to risk mixing encodings irreversibly and you enjoy the ease
of automatic character set conversion, make sure you use UTF-8 for your
database.

PostgreSQL RULEs are not related to rules as defined in other DBMSs. RULEs
are complicated to understand and are mainly there as Postgres internal
machinery. In most cases they don’t behave as the user expects them to and
TRIGGERs are best used instead.

Using JSON(B) values with relational access patterns makes for less
efficient SQL which is harder to read and might not perform as well. It’s
better not to mix the SQL and NoSQL paradigms, but use each facility
for what it’s best at doing.

uuids take up more storage space than even bigints and indexing them is
less efficient. They may guarantee a range of values that you simply don’t
require for your use case, and an integer index might be enough to
guarantee uniqueness.

Bi-directional or multi-master replication is more complex than what
appears at first sight. For practical use in a production system, there is a
very long list of prerequisites, considerations and caveats. If your use case

indeed justifies setting up a multi-master system, you are better off using an
established multi-master solution whose developers have given thought to
these issues rather than re-inventing the wheel.

All of the above apply to homemade distributed systems as well and it is
not recommended to set out building them unless your scope is very
narrowly focused. You need to consider the potential for distributed
serialization anomalies and the very real trade-offs laid out in the CAP and
PACELC theorems.

Performance bad practices

PostgreSQL’s default configuration is very conservative and in most
cases will not be optimal for a real-world workload. This can mean that
you are leaving your system resources underutilized and leaving potential
performance gains on the table.

You can shoot yourself in the foot by calculating memory allocation
settings incorrectly. You need to take your workload into account,
including what types of queries you are running and how memory-hungry
they are along with what level of client concurrency you are expecting.

Excessive concurrency can kill your performance rather than allow more
work to be performed in parallel because of the way Multi-Version
Concurrency Control (MVCC) works. You need to be aware of the risks
associated with opening too many sessions inside PostgreSQL, and also the
nature of your workload and the limitations of your particular database host.

Connections that are mostly or entirely idle don’t come for free; they are
associated with computational overhead that may affect PostgreSQL’s, and
your operating system’s, performance in general. You should try to avoid
having connections around that don’t do much actual work. If you can’t,
you should use a connection pooler that’s aware of these connection

semantics, such as PgBouncer in Transaction Mode.

Idle in transaction sessions and sessions with long-running queries can
cause unexpected blocking of other queries, leading to application delays
or errors. They can also postpone or altogether block autovacuum, and this
can lead to performance degradation beacuse of bloat, or more serious
errors.

If you let your transaction rate get out of control, it can outrun the efforts
of autovacuum to prevent XID wraparound failure and bring down your
database. You can mitigate this by batching, reorganizing, and
summarizing data — or even skipping the ingestion of data you aren’t likely
to use again.

Autovacuum is essential for the correct operation of your database.
Lowering its effectiveness or disabling it altogether to save system
resources is a fallacy, because any performance gains will be undone in time
by bloat accumulation, inaccurate optimizer statistics, and forced anti-
wraparound prevention.

Where there’s evidence that a query is running slowly, checking its
EXPLAIN is a quick and accurate way to identify the reasons why and help
troubleshoot it.

Locking objects explicitly can lead to read/write blocking that can make
your application feel sluggish or broken. Where synchronization is
needed, try to use the SERIALIZABLE isolation level and make your
application able to retry actions.

Indexes can make or break your queries' performance, and PostgreSQL has
lots of index types. Examine your query plans and take advantage of

indexing to boost performance for your WHEREs. Sequential scans are bad
because they become linearly slower as the table grows.

Having indexes that you don’t need can slow down your table for writing
and consume valuable disk space. Identify those that aren’t in use from
pg_stat_all_indexes and remove them.

Be careful when dropping indexes that appear unused as this statistic is for
the local node only, and those indexes may be in use on another node you
are physically replicating to.

Administration bad practices

Running out of disk space can cause serious problems, so monitor your
usage closely. Rash decisions like deleting what looks like logs or
unnecessary files or resizing volumes can make the situation worse.
Identify what’s consuming your space, and mitigate by employing multiple
volumes.

Storing PostgreSQL logs on a separate filesystem from the database helps
you reduce the risk of excessive logging filling up your disk. You should
also implement log rotation and enforce log size limits.

Regularly checking PostgreSQL logs is crucial for identifying and
addressing configuration issues, performance bottlenecks, data integrity
concerns, and security incidents in near real-time. This can allow you to deal
with problems before they escalate, and you can use pgBadger to help with
the task.

Not monitoring your PostgreSQL database can lead to undetected
performance issues, security threats, and resource exhaustion that could
impact its operation. By using the appropriate tools and metrics to look out
for slowdowns, resource spikes, and maintenance needs, you can ensure
optimal performance and mitigate risk.

Long-term tracking of PostgreSQL statistics is important for
understanding performance trends and making informed capacity
planning decisions. You can use the usual monitoring tools, or the
lightweight pg_statviz extension to capture and visualize these statistics
over time without the need for heavy tooling or storage overhead.

If you don’t upgrade Postgres regularly with minor releases, you can incur
security risks or run into bugs that have been fixed. By not upgrading to
the next major release you can and miss out on new features and
enhancements. Upgrading is made safe and reliable by well-tested tools
and thorough documentation. Don’t fear the upgrade — fear the alternative.

Failing to upgrade the operating system and dependency libraries as
well, can lead to obscure PostgreSQL performance issues, bugs and
vulnerabilities, negating the perceived stability in pursuit of which you
avoided to upgrade.

Security bad practices

Using psql -W or --password can be confusing and lead to lapses in
security. Rely on PostgreSQL’s automatic built-in password prompt
mechanism instead.

Setting listen_addresses = '*' can expose your database server to

insecure networks, so you should only enable the trusted network
interfaces that are necessary for database connectivity.

Using the trust method in pg_hba.conf in production environments is
unacceptable. You should always enforce proper authentication to your
server and restrict access as much as is practical.

Having your databases and their contents owned by a superuser can lead
to security problems and accidental damage to your data. Instead, create
roles that have only the relevant permissions to own and manage these
databases, and grant permissions selectively to other roles.

Declaring functions as SECURITY DEFINER can cause data leaks and enable
privilege escalation. To reduce risk, use it sparingly and with a safe
search_path, and prefer the combination of SECURITY INVOKER with
explicit GRANTs.

Not securing your search_path can let others hijack queries and escalate
their privileges. Apply tight control over object creation in schemas, and
reference objects owned by trusted users only in queries.

High availability bad practices

RAID and filesystem snapshots can’t help you reliably recover from
corruption, human error or malicious activity. The best way to
guarantee your data is safe is to take backups using appropriate tools like
pg_basebackup.

Taking full backups only makes you vulnerable to data loss between

backups. Leverage Point-in-time recovery with continuous archiving to
be able to restore your database to the point before it was damaged.

Taking backups manually is not robust or reliable, you should instead
schedule automated backups, preferably using dedicated software that is
PostgreSQL-aware (such as Barman or pgBackRest), and ensuring that you
have a redundant copy of the backups in a second location.

Untested backups can fail when you need them the most so to ensure that
they work correctly always attempt a full restore to test your backups.
Do not rely solely on automation but verify every step. Avoid using
homegrown scripts and prefer tried-and-tested solutions.

Having a single database server with no provision for failover inevitably
leads to downtime. Ensure redundancy by setting up standby nodes via
replication.

Manual failover or custom scripts are risky because of the potential for
extended downtime, data divergence or loss. Prefer proven high
availability tools such as RepMgr, Patroni or CloudNativePG for
Kubernetes to ensure reliable and effective management of your HA cluster.

Upgrade/migration bad practices

Always read the release notes for all versions between your current and
target PostgreSQL versions before upgrading. Neglecting to do this can
lead to unexpected behavior because of new optimizations or breaking
changes that are time-consuming to diagnose and fix.

PostgreSQL upgrades can introduce subtle changes in behavior or
performance that may add up to become a problem in the end. Thoroughly
test your application and queries in a staging environment before
upgrading, and use realistic data and workloads to uncover potential
issues early.

Neglecting to address character encoding differences and disallowed
characters during a database migration can lead to import errors or even
data loss. When migrating between different RDBMSs, make sure to
properly specify character encodings and the corresponding conversion
between them, and clean the data from things such as ASCII nulls.
Migration tools can help with this task.

When migrating boolean data to PostgreSQL, ensure it uses the proper
boolean type. Convert non-standard representations (e.g., integers or
characters) to true and false to maintain consistency and avoid type
mismatch errors.

Inconsistencies in data type naming, functionality, and precision across
DBMSs can lead to migration errors. Always verify and understand
data type definitions and behavior and use PostgreSQL’s conversion
tools and migration utilities to ensure compatibility.

Conclusion

Misaligning your usage of PostgreSQL with your needs may stem from a
lack of self-awareness and can lead to predictable mistakes. Recognizing
your user profile and role-specific tendencies, biases, and limitations helps
you focus on areas needing improvement to prevent mistakes and
optimize your database interactions. Understanding what kind of user you
are, following best practices, and seeking guidance allows for a more

objective view of potential problems.

Waiting until problems escalate before intervening on performance,
reliability, or scalability is an unnecessary risk. Plan for future growth
and optimize from the beginning to prevent technical debt. Proactive
measures like code reviews and usage pattern analysis, coupled with
regular monitoring and prompt attention to inefficiencies, are crucial
and can save you a lot of trouble.

Inheriting a poorly designed database means you should address major
pain points as a priority before incrementally improving the system.
Systematically assess the database using tools for schema inspection, data
analysis, and performance monitoring. Along the way, document what you
find and what you change, automate processes, share best practices, and
take care to avoid the XY problem.

Failing to recognize PostgreSQL’s requirements, stemming from its
versatile nature, can limit its effectiveness. Use it thoughtfully by
optimizing queries, indexing effectively and through preventive
maintenance to have a performant, stable and reliable system. Stay
informed, and treat Postgres, its ecosystem, and its community as
trusted partners on your data journey. Recognizing common mistakes and
adopting best practices lets you harness PostgreSQL’s potential to build
robust, reliable systems.

	Welcome
	1_Introduction
	2_Bad_SQL_usage
	3_Improper_data_type_usage
	4_Table_and_index_mistakes
	5_Improper_feature_usage
	6_Performance_bad_Practices
	7_Administration_bad_practices
	8_Security_bad_practices
	9_High_availability_bad_practices
	10_Upgrade/migration_bad_practices
	11_Conclusion
	Appendix_A._Frogge_Emporium_database_schema
	Appendix_B._Cheat_sheet

